Results 1 - 10
of
5,283,710
DISTRIBUTED SYSTEMS
, 1985
"... Growth of distributed systems has attained unstoppable momentum. If we better understood how to think about, analyze, and design distributed systems, we could direct their implementation with more confidence. ..."
Abstract
-
Cited by 755 (1 self)
- Add to MetaCart
Growth of distributed systems has attained unstoppable momentum. If we better understood how to think about, analyze, and design distributed systems, we could direct their implementation with more confidence.
Computing semantic relatedness using Wikipedia-based explicit semantic analysis
- In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract
-
Cited by 546 (9 self)
- Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from
The Amoeba Distributed Operating System
, 1992
"... INTRODUCTION Roughly speaking, we can divide the history of modern computing into the following eras: d 1970s: Timesharing (1 computer with many users) d 1980s: Personal computing (1 computer per user) d 1990s: Parallel computing (many computers per user) Until about 1980, computers were huge, e ..."
Abstract
-
Cited by 1070 (5 self)
- Add to MetaCart
people's computers or share files in various (often ad hoc) ways. Nowadays some systems have many processors per user, either in the form of a parallel computer or a large collection of CPUs shared by a small user community. Such systems are usually called parallel or distributed computer systems
Virtual Time and Global States of Distributed Systems
- PARALLEL AND DISTRIBUTED ALGORITHMS
, 1988
"... A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a consiste ..."
Abstract
-
Cited by 741 (6 self)
- Add to MetaCart
A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a
Distributed Database Systems
"... this article, we discuss the fundamentals of distributed DBMS technology. We address the data distribution and architectural design issues as well as the algorithms that need to be implemented to provide the basic DBMS functions such as query processing, concurrency control, reliability, and replica ..."
Abstract
-
Cited by 586 (26 self)
- Add to MetaCart
this article, we discuss the fundamentals of distributed DBMS technology. We address the data distribution and architectural design issues as well as the algorithms that need to be implemented to provide the basic DBMS functions such as query processing, concurrency control, reliability
Explicit Allocation of Best-Effort Packet Delivery Service
, 1998
"... This paper presents the “allocated-capacity” framework for providing different levels of best-effort service in times of network congestion. The “allocatedcapacity” framework—extensions to the Internet protocols and algorithms—can allocate bandwidth to different users in a controlled and predictable ..."
Abstract
-
Cited by 467 (2 self)
- Add to MetaCart
This paper presents the “allocated-capacity” framework for providing different levels of best-effort service in times of network congestion. The “allocatedcapacity” framework—extensions to the Internet protocols and algorithms—can allocate bandwidth to different users in a controlled and predictable way during network congestion. The framework supports two complementary ways of controlling the bandwidth allocation: sender-based and receiver-based. In today’s heterogeneous and commercial Internet the framework can serve as a basis for charging for usage and for more efficiently utilizing the network resources. We focus on algorithms for essential components of the framework: a differential dropping algorithm for network routers and a tagging algorithm for profile meters at the edge of the network for bulk-data transfers. We present simulation results to illustrate the effectiveness of the combined algorithms in controlling transmission control protocol (TCP) traffic to achieve certain targeted sending rates.
Bigtable: A distributed storage system for structured data
- IN PROCEEDINGS OF THE 7TH CONFERENCE ON USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION - VOLUME 7
, 2006
"... Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications ..."
Abstract
-
Cited by 995 (3 self)
- Add to MetaCart
Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications
Scale and performance in a distributed file system
- ACM Transactions on Computer Systems
, 1988
"... The Andrew File System is a location-transparent distributed tile system that will eventually span more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and complicates system operation. In this paper we present observations of a prototype implementation, motivat ..."
Abstract
-
Cited by 937 (47 self)
- Add to MetaCart
The Andrew File System is a location-transparent distributed tile system that will eventually span more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and complicates system operation. In this paper we present observations of a prototype implementation
Models and issues in data stream systems
- IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams. In addition to reviewing past work releva ..."
Abstract
-
Cited by 770 (19 self)
- Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams. In addition to reviewing past work
Coda: A Highly Available File System for a Distributed Workstation Environment
- In IEEE Transactions on Computers
, 1990
"... Abstract- Coda is a file system for a large-scale distributed computing environment composed of Unix workstations. It provides resiliency to server and network failures through the use of two distinct but complementary mechanisms. One mechanism, server replication,stores copies of a file at multiple ..."
Abstract
-
Cited by 530 (46 self)
- Add to MetaCart
Abstract- Coda is a file system for a large-scale distributed computing environment composed of Unix workstations. It provides resiliency to server and network failures through the use of two distinct but complementary mechanisms. One mechanism, server replication,stores copies of a file
Results 1 - 10
of
5,283,710