Results 1  10
of
349,010
Ant Colony System: A cooperative learning approach to the traveling salesman problem
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract

Cited by 1000 (53 self)
 Add to MetaCart
This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a
Planning as Heuristic Search
 Artificial Intelligence
, 2001
"... In the AIPS98 Planning Contest, the hsp planner showed that heuristic search planners can be competitive with state of the art Graphplan and sat planners. Heuristic search planners like hsp transform planning problems into problems of heuristic search by automatically extracting heuristics from S ..."
Abstract

Cited by 423 (34 self)
 Add to MetaCart
In the AIPS98 Planning Contest, the hsp planner showed that heuristic search planners can be competitive with state of the art Graphplan and sat planners. Heuristic search planners like hsp transform planning problems into problems of heuristic search by automatically extracting heuristics from
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
The ant colony optimization metaheuristic
 in New Ideas in Optimization
, 1999
"... Ant algorithms are multiagent systems in which the behavior of each single agent, called artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant algorithms are one of the most successful examples of swarm intelligent systems [3], and have been applied to many ..."
Abstract

Cited by 385 (23 self)
 Add to MetaCart
to many types of problems, ranging from the classical traveling salesman
Heuristics for the Traveling Salesman Problem
"... The traveling salesman problem is a well known optimization problem. Optimal solutions to small instances can be found in reasonable time by linear programming. However, since the TSP is NPhard, it will be very time consuming to solve larger instances with guaranteed optimality. Setting optimality ..."
Abstract
 Add to MetaCart
The traveling salesman problem is a well known optimization problem. Optimal solutions to small instances can be found in reasonable time by linear programming. However, since the TSP is NPhard, it will be very time consuming to solve larger instances with guaranteed optimality. Setting optimality
The traveling salesman problem
, 1994
"... This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
, and that outputs samples in exact accordance with the desired distribution. The method uses couplings, which have also played a role in other sampling schemes; however, rather than running the coupled chains from the present into the future, one runs from a distant point in the past up until the present, where
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
The FF planning system: Fast plan generation through heuristic search
 Journal of Artificial Intelligence Research
, 2001
"... We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be ind ..."
Abstract

Cited by 822 (53 self)
 Add to MetaCart
We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts
Results 1  10
of
349,010