• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 331,725
Next 10 →

Querying Heterogeneous Information Sources Using Source Descriptions

by Alon Levy, Anand Rajaraman, Joann Ordille , 1996
"... We witness a rapid increase in the number of structured information sources that are available online, especially on the WWW. These sources include commercial databases on product information, stock market information, real estate, automobiles, and entertainment. We would like to use the data stored ..."
Abstract - Cited by 727 (35 self) - Add to MetaCart
-featured database systems and can answer only a small set of queries over their data (for example, forms on the WWW restrict the set of queries one can ask). (3) Since the number of sources is very large, effective techniques are needed to prune the set of information sources accessed to answer a query. (4

CYC: A Large-Scale Investment in Knowledge Infrastructure

by Douglas Lenat - Communications of the ACM , 1995
"... This article examines the fundamental ..."
Abstract - Cited by 858 (4 self) - Add to MetaCart
This article examines the fundamental

Semantic similarity based on corpus statistics and lexical taxonomy

by Jay J. Jiang, David W. Conrath - Proc of 10th International Conference on Research in Computational Linguistics, ROCLING’97 , 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract - Cited by 852 (0 self) - Add to MetaCart
This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better

Computing semantic relatedness using Wikipedia-based explicit semantic analysis

by Evgeniy Gabrilovich, Shaul Markovitch - In Proceedings of the 20th International Joint Conference on Artificial Intelligence , 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract - Cited by 546 (9 self) - Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from

Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language

by Philip Resnik , 1999
"... This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach. The a ..."
Abstract - Cited by 601 (9 self) - Add to MetaCart
This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 609 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

The Lorel Query Language for Semistructured Data

by Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer Widom, Janet Wiener - International Journal on Digital Libraries , 1997
"... We present the Lorel language, designed for querying semistructured data. Semistructured data is becoming more and more prevalent, e.g., in structured documents such as HTML and when performing simple integration of data from multiple sources. Traditional data models and query languages are inapprop ..."
Abstract - Cited by 734 (29 self) - Add to MetaCart
We present the Lorel language, designed for querying semistructured data. Semistructured data is becoming more and more prevalent, e.g., in structured documents such as HTML and when performing simple integration of data from multiple sources. Traditional data models and query languages

Object exchange across heterogeneous information sources

by Yannis Papakonstantinou, Hector Garcia-molina, Jennifer Widom - INTERNATIONAL CONFERENCE ON DATA ENGINEERING , 1995
"... We address the problem of providing integrated access to diverse and dynamic information sources. We explain how this problem differs from the traditional database integration problem and we focus on one aspect of the information integration problem, namely information exchange. We define an object- ..."
Abstract - Cited by 513 (57 self) - Add to MetaCart
We address the problem of providing integrated access to diverse and dynamic information sources. We explain how this problem differs from the traditional database integration problem and we focus on one aspect of the information integration problem, namely information exchange. We define an object-based

Efficient and Effective Querying by Image Content

by C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, R. Barber - Journal of Intelligent Information Systems , 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include med ..."
Abstract - Cited by 500 (13 self) - Add to MetaCart
In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include

The TSIMMIS Project: Integration of Heterogeneous Information Sources

by Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis Papakonstantinou, Jeffrey Ullman, Jennifer Widom
"... The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects, ..."
Abstract - Cited by 534 (19 self) - Add to MetaCart
The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects
Next 10 →
Results 1 - 10 of 331,725
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University