Results 1  10
of
856,640
Evolution Strategies for Constants Optimization in Genetic Programming
"... Evolutionary computation methods have been used to solve several optimization and learning problems. This paper describes an application of evolutionary computation methods to constants optimization in Genetic Programming. A general evolution strategy technique is proposed for approximating the opti ..."
Abstract
 Add to MetaCart
Evolutionary computation methods have been used to solve several optimization and learning problems. This paper describes an application of evolutionary computation methods to constants optimization in Genetic Programming. A general evolution strategy technique is proposed for approximating
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1051 (12 self)
 Add to MetaCart
Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect
Strategies of Discourse Comprehension
, 1983
"... El Salvador, Guatemala is a, study in black and white. On the left is a collection of extreme MarxistLeninist groups led by what one diplomat calls “a pretty faceless bunch of people.’ ’ On the right is an entrenched elite that has dominated Central America’s most populous country since a CIAbacke ..."
Abstract

Cited by 601 (27 self)
 Add to MetaCart
El Salvador, Guatemala is a, study in black and white. On the left is a collection of extreme MarxistLeninist groups led by what one diplomat calls “a pretty faceless bunch of people.’ ’ On the right is an entrenched elite that has dominated Central America’s most populous country since a CIAbacked coup deposed the reformist government of Col. Jacobo Arbenz Guzmán in 1954. Moderates of the political center. embattled but alive in E1 Salvador, have virtually disappeared in Guatemalajoining more than 30.000 victims of terror over the last tifteen vears. “The situation in Guatemala is much more serious than in EI Salvador, ” declares one Latin American diplomat. “The oligarchy is that much more reactionary. and the choices are far fewer. “ ‘Zero’: The Guatemalan oligarchs hated Jimmy Carter for cutting off U.S. military aid in 1977 to protest humanrights abusesand the rightwingers hired marimba bands and set off firecrackers on the night Ronald Reagan was elected. They considered Reagan an ideological kinsman and believed they had a special
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized
An Overview of the C++ Programming Language
, 1999
"... This overview of C++ presents the key design, programming, and languagetechnical concepts using examples to give the reader a feel for the language. C++ is a generalpurpose programming language with a bias towards systems programming that supports efficient lowlevel computation, data abstraction, ..."
Abstract

Cited by 1766 (15 self)
 Add to MetaCart
This overview of C++ presents the key design, programming, and languagetechnical concepts using examples to give the reader a feel for the language. C++ is a generalpurpose programming language with a bias towards systems programming that supports efficient lowlevel computation, data abstraction
Results 1  10
of
856,640