Results 1  10
of
354
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Solving Systems of Polynomial Equations
 AMERICAN MATHEMATICAL SOCIETY, CBMS REGIONAL CONFERENCES SERIES, NO 97
, 2002
"... One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, ..."
Abstract

Cited by 221 (14 self)
 Add to MetaCart
One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, statistics, machine learning, control theory, and numerous other areas. The set of solutions to a system of polynomial equations is an algebraic variety, the basic object of algebraic geometry. The algorithmic study of algebraic varieties is the central theme of computational algebraic geometry. Exciting recent developments in symbolic algebra and numerical software for geometric calculations have revolutionized the field, making formerly inaccessible problems tractable, and providing fertile ground for experimentation and conjecture. The first half of this book furnishes an introduction and represents a snapshot of the state of the art regarding systems of polynomial equations. Afficionados of the wellknown text books by Cox, Little, and O’Shea will find familiar themes in the first five chapters: polynomials in one variable, Gröbner
Reverse Search for Enumeration
 Discrete Applied Mathematics
, 1993
"... The reverse search technique has been recently introduced by the authors for efficient enumeration of vertices of polyhedra and arrangements. In this paper, we develop this idea in a general framework and show its broader applications to various problems in operations research, combinatorics, and ..."
Abstract

Cited by 208 (30 self)
 Add to MetaCart
The reverse search technique has been recently introduced by the authors for efficient enumeration of vertices of polyhedra and arrangements. In this paper, we develop this idea in a general framework and show its broader applications to various problems in operations research, combinatorics, and geometry. In particular, we propose new algorithms for listing (i) all triangulations of a set of n points in the plane, (ii) all cells in a hyperplane arrangement in R d , (iii) all spanning trees of a graph, (iv) all Euclidean (noncrossing) trees spanning a set of n points in the plane, (v) all connected induced subgraphs of a graph, and (vi) all topological orderings of an acyclic graph. Finally we propose a new algorithm for the 01 integer programming problem which can be considered as an alternative to the branchandbound algorithm. 1 Introduction The listing of all objects that satisfy a specified property is a fundamental problem in combinatorics, computational geometr...
Linear Programming: Foundations and Extensions
, 1996
"... under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. ISBN 0000000000 The text for this book was formated in Time ..."
Abstract

Cited by 196 (0 self)
 Add to MetaCart
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. ISBN 0000000000 The text for this book was formated in TimesRoman and the mathematics was formated in Michael Spivak’s Mathtimes using AMSL ATEX(which is a macro package for Leslie Lamport’s L ATEX, which itself is a macro package for Donald Knuth’s TEXtext formatting system) and converted from deviceindependent to postscript format using DVIPS. The figures were produced using SHOWCASE on a Silicon Graphics, Inc. workstation and were incorporated into the text as encapsulated postscript files with the macro package called PSFIG.TEX. To my parents, Howard and Marilyn, my dear wife, Krisadee, and the babes, Marisa and Diana Contents
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 166 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for which very little is known from the point of view of approximation algorithms. It has recently been brought into focus in work on problems such as VLSI layout and routing in highspeed networks; in these settings, the current lack of understanding of the disjoint paths problem is often an obstacle to the design of practical heuristics.
Conditions For Unique Graph Realizations
 SIAM J. Comput
, 1992
"... . The graph realization problem is that of computing the relative locations of a set of vertices placed in Euclidean space, relying only upon some set of intervertex distance measurements. This paper is concerned with the closely related problem of determining whether or not a graph has a unique re ..."
Abstract

Cited by 154 (1 self)
 Add to MetaCart
. The graph realization problem is that of computing the relative locations of a set of vertices placed in Euclidean space, relying only upon some set of intervertex distance measurements. This paper is concerned with the closely related problem of determining whether or not a graph has a unique realization. Both these problems are NPhard, but the proofs rely upon special combinations of edge lengths. If we assume the vertex locations are unrelated then the uniqueness question can be approached from a purely graph theoretic angle that ignores edge lengths. This paper identifies three necessary graph theoretic conditions for a graph to have a unique realization in any dimension. Efficient sequential and NC algorithms are presented for each condition, although these algorithms have very different flavors in different dimensions. 1. Introduction. Consider a graph G = (V; E) consisting of a set of n vertices and m edges, along with a real number associated with each edge. Now try to assi...
Results 1  10
of
354