Results 1 - 10
of
5,405
On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
- In STOC
, 2005
"... Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear co ..."
Abstract
-
Cited by 366 (6 self)
- Add to MetaCart
Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear
Simulating Physics with Computers
- SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract
-
Cited by 601 (1 self)
- Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum
Wireless Communications
, 2005
"... Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University ..."
Abstract
-
Cited by 1129 (32 self)
- Add to MetaCart
Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract
-
Cited by 850 (0 self)
- Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
The Landscape of Parallel Computing Research: A View from Berkeley
- TECHNICAL REPORT, UC BERKELEY
, 2006
"... ..."
Closest Point Search in Lattices
- IEEE TRANS. INFORM. THEORY
, 2000
"... In this semi-tutorial paper, a comprehensive survey of closest-point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest-point search algorithm, ba ..."
Abstract
-
Cited by 324 (2 self)
- Add to MetaCart
, based on the Schnorr-Euchner variation of the Pohst method, is implemented. Given an arbitrary point x 2 R m and a generator matrix for a lattice , the algorithm computes the point of that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a
Quantum cryptography
- Rev. Mod. Phys
, 2002
"... Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues. Contents I ..."
Abstract
-
Cited by 182 (6 self)
- Add to MetaCart
Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues. Contents I
Results 1 - 10
of
5,405