Results 1  10
of
2,538
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 726 (8 self)
 Add to MetaCart
thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 502 (1 self)
 Add to MetaCart
principal components. 1 Introduction Cluster analysis is an important tool for \unsupervised" learning the problem of nding groups in data without the help of a response variable. A major challenge in cluster analysis is estimation of the optimal number of \clusters". Figure 1 (top right) shows
How much should we trust differencesindifferences estimates?
, 2003
"... Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data on femal ..."
Abstract

Cited by 828 (1 self)
 Add to MetaCart
Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data
Random forests
 Machine Learning
, 2001
"... Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the fo ..."
Abstract

Cited by 3613 (2 self)
 Add to MetaCart
Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1274 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 670 (10 self)
 Add to MetaCart
introduced in this paper differ from those common to much of the computer vision literature in that the underlying random fields are nonMarkovian and have a large number of parameters that must be estimated. Relations to other learning approaches, including decision trees, are given. As a demonstration
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
propagation converges, it gives a surprisingly good ap proximation to the correct marginals. Since the dis tinction between convergence and oscillation is easy to make after a small number of iterations, this may sug gest a way of checking whether loopy propagation is appropriate for a given problem. Acknowl
Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure
, 2004
"... This paper presents a new approach to estimation and inference in panel data models with a multifactor error structure where the unobserved common factors are (possibly) correlated with exogenously given individualspecific regressors, and the factor loadings differ over the cross section units. The ..."
Abstract

Cited by 383 (44 self)
 Add to MetaCart
This paper presents a new approach to estimation and inference in panel data models with a multifactor error structure where the unobserved common factors are (possibly) correlated with exogenously given individualspecific regressors, and the factor loadings differ over the cross section units
Iterative hard thresholding for compressed sensing
 Appl. Comp. Harm. Anal
"... Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery probl ..."
Abstract

Cited by 329 (18 self)
 Add to MetaCart
problem. We show that the algorithm has the following properties (made more precise in the main text of the paper) • It gives nearoptimal error guarantees. • It is robust to observation noise. • It succeeds with a minimum number of observations. • It can be used with any sampling operator for which
Heterogeneous uncertainty sampling for supervised learning
 In Proceedings of the 11th International Conference on Machine Learning (ICML
, 1994
"... Uncertainty sampling methods iteratively request class labels for training instances whose classes are uncertain despite the previous labeled instances. These methods can greatly reduce the number of instances that an expert need label. One problem with this approach is that the classifier best suit ..."
Abstract

Cited by 312 (3 self)
 Add to MetaCart
Uncertainty sampling methods iteratively request class labels for training instances whose classes are uncertain despite the previous labeled instances. These methods can greatly reduce the number of instances that an expert need label. One problem with this approach is that the classifier best
Results 1  10
of
2,538