Results 1  10
of
10,975
Estimation Consistency of the Group Lasso and its Applications
"... We extend the ℓ2consistency result of (Meinshausen and Yu 2008) from the Lasso to the group Lasso. Our main theorem shows that the group Lasso achieves estimation consistency under a mild condition and an asymptotic upper bound on the number of selected variables can be obtained. As a result, we ca ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
can apply the nonnegative garrote procedure to the group Lasso result to obtain an estimator which is simultaneously estimation and variable selection consistent. In particular, our setting allows both the number of groups and the number of variables per group increase and thus is applicable to high
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 281 (34 self)
 Add to MetaCart
it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS
Lasso
"... We study the classic problem of choosing a prior distribution for a location parameter β = (β1,..., βp) as p grows large. First, we study the standard “globallocal shrinkage ” approach, based on scale mixtures of normals. Two theorems are presented which characterize certain desirable properties of ..."
Abstract
 Add to MetaCart
We study the classic problem of choosing a prior distribution for a location parameter β = (β1,..., βp) as p grows large. First, we study the standard “globallocal shrinkage ” approach, based on scale mixtures of normals. Two theorems are presented which characterize certain desirable properties of shrinkage priors for sparse problems. Next, we review some recent results showing how Lévy processes can be used to generate infinitedimensional versions of standard normal scalemixture priors, along with new priors that have yet to be seriously studied in the literature. This approach provides an intuitive framework both for generating new regularization penalties and shrinkage rules, and for performing asymptotic analysis on existing models.
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
Results 1  10
of
10,975