Results 1  10
of
437,724
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set
Rules, discretion, and reputation in a model of monetary policy
 JOURNAL OF MONETARY ECONOMICS
, 1983
"... In a discretionary regime the monetary authority can print more money and create more inflation than people expect. But, although these inflation surprises can have some benefits, they cannot arise systematically in equilibrium when people understand the policymakor's incentives and form their ..."
Abstract

Cited by 794 (9 self)
 Add to MetaCart
the policymaker and the private agents, it is possible that reputational forces can substitute for formal rules. Here, we develop an example of a reputational equilibrium where the outcomes turn out to be weighted averages of those from discretion and those from the ideal rule. In particular, the rates
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend
Feature selection based on mutual information: Criteria of maxdepe ndency, maxrelevance, and minredundancy
 IEEE Trans. Pattern Analysis and Machine Intelligence
"... Abstract—Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we f ..."
Abstract

Cited by 533 (7 self)
 Add to MetaCart
to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits
Discrete DifferentialGeometry Operators for Triangulated 2Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract

Cited by 453 (17 self)
 Add to MetaCart
Voronoi cells and the mixed FiniteElement/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 475 (8 self)
 Add to MetaCart
AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 622 (2 self)
 Add to MetaCart
leads to a NewtonRaphson style minimization. In this report, after rederiving the method in a physically intuitive way, we answer the crucial question of how to choose the feature windows that are best suited for tracking. Our selection criterion is based directly on the definition of the tracking
Results 1  10
of
437,724