Results 1  10
of
14,258
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 804 (20 self)
 Add to MetaCart
Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object’s topology is made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian to model propagating solidhiquid interfaces with curvaturedependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropysatisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. Index Terms Shape modeling, shape recovery, interface motion, level sets, hyperbolic conservation laws, HamiltonJacobi
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract

Cited by 724 (33 self)
 Add to MetaCart
Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and Ftheory compactifications on CalabiYau fourfolds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the KlebanovStrassler gravity dual to a confining N = 1 supersymmetric gauge theory, and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gauge theory can arise as a string theory. The worldsheet model in this case involves a topological sigma model. Instanton contributions to the sigma model give rise to Wilson line insertions in the spacetime ChernSimons theory. A certain holomorphic analog of ChernSimons theory can also arise as a string theory.
A survey of generalpurpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract

Cited by 545 (18 self)
 Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the latest research in mapping generalpurpose computation to graphics hardware. We begin with the technical motivations that underlie generalpurpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim the main body of this report at two separate audiences. First, we describe the techniques used in mapping generalpurpose computation to graphics hardware. We believe these techniques will be generally useful for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey and categorize the latest developments in generalpurpose application development on graphics hardware.
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently  those with shortrange forces where the neighbors of each atom change rapidly. They can be implemented on any distributedmemory parallel machine which allows for messagepassing of data between independently executing processors. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows that the current generation of parallel machines is competitive with conventi...
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Results 1  10
of
14,258