Results 1 - 10
of
14,258
A Framework for Dynamic Graph Drawing
- CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract
-
Cited by 627 (44 self)
- Add to MetaCart
as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, series-parallel digraphs, planar st-digraphs, and planar
Shape modeling with front propagation: A level set approach
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract- Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which re-tains some of the attractive features of existing methods ..."
Abstract
-
Cited by 804 (20 self)
- Add to MetaCart
Abstract- Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which re-tains some of the attractive features of existing methods and over-comes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori as-sumption about the object’s topology is made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian to model propagating solidhiquid interfaces with curva-ture-dependent speeds. The interface (front) is a closed, noninter-secting, hypersurface flowing along its gradient field with con-stant speed or a speed that depends on the curvature. It is moved by solving a “Hamilton-Jacob? ’ type equation written for a func-tion in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface in the vi-cinity of object boundaries. The resulting equation of motion is solved by employing entropy-satisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. Index Terms- Shape modeling, shape recovery, interface mo-tion, level sets, hyperbolic conservation laws, Hamilton-Jacobi
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract
-
Cited by 724 (33 self)
- Add to MetaCart
Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and F-theory compactifications on Calabi-Yau four-folds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the Klebanov-Strassler gravity dual to a confining N = 1 supersymmetric gauge theory, and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.
Chern-Simons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given space-time interpretations. For instance, three-dimensional Chern-Simons gaug ..."
Abstract
-
Cited by 551 (14 self)
- Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given space-time interpretations. For instance, three-dimensional Chern-Simons gauge theory can arise as a string theory. The world-sheet model in this case involves a topological sigma model. Instanton contributions to the sigma model give rise to Wilson line insertions in the space-time Chern-Simons theory. A certain holomorphic analog of Chern-Simons theory can also arise as a string theory.
A survey of general-purpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract
-
Cited by 545 (18 self)
- Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the latest research in mapping general-purpose computation to graphics hardware. We begin with the technical motivations that underlie general-purpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim the main body of this report at two separate audiences. First, we describe the techniques used in mapping general-purpose computation to graphics hardware. We believe these techniques will be generally useful for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey and categorize the latest developments in general-purpose application development on graphics hardware.
Fast Parallel Algorithms for Short-Range Molecular Dynamics
- JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract
-
Cited by 622 (6 self)
- Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently -- those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed--memory parallel machine which allows for message--passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers -- the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventi...
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract
-
Cited by 1108 (51 self)
- Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Results 1 - 10
of
14,258