Results 1  10
of
2,236
Laplacian eigenmaps and spectral techniques for embedding and clustering.
 Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract

Cited by 668 (7 self)
 Add to MetaCart
Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded
The geometry of graphs and some of its algorithmic applications
 COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract

Cited by 524 (19 self)
 Add to MetaCart
tensions. 0 For graphs embeddable in lowdimensional spaces with a small distortion, we can find lowdiameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Localitysensitive hashing scheme based on pstable distributions
 In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry
, 2004
"... inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
NN algorithm for the caseÔ�. We also show that the algorithm finds the exact near neigbhor time for data satisfying certain “bounded growth ” condition. Unlike earlier schemes, our LSH scheme works directly on points in the Euclidean space without embeddings. Consequently, the resulting query time
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1226 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing
A theory of timed automata
, 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract

Cited by 2651 (32 self)
 Add to MetaCart
Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
Face recognition using laplacianfaces
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Abstract—We propose an appearancebased face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) wh ..."
Abstract

Cited by 389 (38 self)
 Add to MetaCart
) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace
BigBang Simulation for Embedding Network Distances in Euclidean Space
, 2004
"... Embedding of a graph metric in Euclidean space efficiently and accurately is an important problem in general with applications in topology aggregation, closest mirror selection, and application level routing. We propose a new graph embedding scheme called BigBang Simulation (BBS), which simulates a ..."
Abstract

Cited by 151 (4 self)
 Add to MetaCart
Embedding of a graph metric in Euclidean space efficiently and accurately is an important problem in general with applications in topology aggregation, closest mirror selection, and application level routing. We propose a new graph embedding scheme called BigBang Simulation (BBS), which simulates
Results 1  10
of
2,236