Results 1  10
of
3,679
Ellipse fitting using orthogonal hyperbolae and Stirling’s oval
 CVGIP: Graphical Models and Image Processing
, 1998
"... oval ..."
Sketchpad: A manmachine graphical communication system
, 2003
"... The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical, and ..."
Abstract

Cited by 702 (6 self)
 Add to MetaCart
The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
learning can be used in robot learning and control.
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 400 (9 self)
 Add to MetaCart
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
Ellipse Fitting with Hyperaccuracy
"... Abstract. For fitting an ellipse to a point sequence, ML (maximum likelihood) has been regarded as having the highest accuracy. In this paper, we demonstrate the existence of a “hyperaccurate ” method which outperforms ML. This is made possible by error analysis of ML followed by subtraction of high ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
Abstract. For fitting an ellipse to a point sequence, ML (maximum likelihood) has been regarded as having the highest accuracy. In this paper, we demonstrate the existence of a “hyperaccurate ” method which outperforms ML. This is made possible by error analysis of ML followed by subtraction
Boundary Finding with Parametrically Deformable Models
, 1992
"... Introduction This work describes an approach to finding objects in images based on deformable shape models. Boundary finding in two and three dimensional images is enhanced both by considering the bounding contour or surface as a whole and by using modelbased shape information. Boundary finding u ..."
Abstract

Cited by 318 (6 self)
 Add to MetaCart
Introduction This work describes an approach to finding objects in images based on deformable shape models. Boundary finding in two and three dimensional images is enhanced both by considering the bounding contour or surface as a whole and by using modelbased shape information. Boundary finding
Guaranteed Ellipse Fitting with the Sampson Distance
"... Abstract. When faced with an ellipse fitting problem, practitioners frequently resort to algebraic ellipse fitting methods due to their simplicity and efficiency. Currently, practitioners must choose between algebraic methods that guarantee an ellipse fit but exhibit high bias, and geometric methods ..."
Abstract
 Add to MetaCart
methods that are less biased but may no longer guarantee an ellipse solution. We address this limitation by proposing a method that strikes a balance between these two objectives. Specifically, we propose a fast stable algorithm for fitting a guaranteed ellipse to data using the Sampson distance as a data
Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation
, 1991
"... This paper addresses the problem of parametric representation and estimation of complex planar curves in 2D, surfaces in 3D and nonplanar space curves in 3D. Curves and surfaces can be defined either parametrically or implicitly, and we use the latter representation. A planar curve is the set o ..."
Abstract

Cited by 307 (2 self)
 Add to MetaCart
This paper addresses the problem of parametric representation and estimation of complex planar curves in 2D, surfaces in 3D and nonplanar space curves in 3D. Curves and surfaces can be defined either parametrically or implicitly, and we use the latter representation. A planar curve is the set
Results 1  10
of
3,679