Results 1  10
of
154,396
Eigenvalues of Euclidean Random Matrices”, Random Struct
 Algorithms
, 2008
"... We study the spectral measure of large Euclidean random matrices. The entries of these matrices are determined by the relative position of n random points in a compact set Ωn of R d. Under various assumptions we establish the almost sure convergence of the limiting spectral measure as the number of ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
We study the spectral measure of large Euclidean random matrices. The entries of these matrices are determined by the relative position of n random points in a compact set Ωn of R d. Under various assumptions we establish the almost sure convergence of the limiting spectral measure as the number
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.
A Simple Proof of the Restricted Isometry Property for Random Matrices
 CONSTR APPROX
, 2008
"... We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmical ..."
Abstract

Cited by 636 (69 self)
 Add to MetaCart
We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided
Shape fluctuations and random matrices
, 1999
"... We study a certain random growth model in two dimensions closely related to the onedimensional totally asymmetric exclusion process. The results show that the shape fluctuations, appropriately scaled, converges in distribution to the TracyWidom largest eigenvalue distribution for the Gaussian Uni ..."
Abstract

Cited by 409 (11 self)
 Add to MetaCart
We study a certain random growth model in two dimensions closely related to the onedimensional totally asymmetric exclusion process. The results show that the shape fluctuations, appropriately scaled, converges in distribution to the TracyWidom largest eigenvalue distribution for the Gaussian
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of realworld complex networks.
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Results 1  10
of
154,396