Results 1  10
of
2,055,724
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can
The Xtree: An index structure for highdimensional data
 In Proceedings of the Int’l Conference on Very Large Data Bases
, 1996
"... In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures is the over ..."
Abstract

Cited by 592 (15 self)
 Add to MetaCart
In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
The SRtree: An Index Structure for HighDimensional Nearest Neighbor Queries
, 1997
"... Recently, similarity queries on feature vectors have been widely used to perform contentbased retrieval of images. To apply this technique to large databases, it is required to develop multidimensional index structures supporting nearest neighbor queries e ciently. The SStree had been proposed for ..."
Abstract

Cited by 442 (3 self)
 Add to MetaCart
volume than bounding rectangles with highdimensional data and that this reduces search efficiency. To overcome this drawback, we propose a new index structure called the SRtree (Sphere/Rectangletree) which integrates bounding spheres and bounding rectangles. A region of the SRtree is specified
The TVtree  an index structure for highdimensional data
 VLDB Journal
, 1994
"... We propose a file structure to index highdimensionality data, typically, points in some feature space. The idea is to use only a few of the features, utilizing additional features whenever the additional discriminatory power is absolutely necessary. We present in detail the design of our tree struc ..."
Abstract

Cited by 216 (8 self)
 Add to MetaCart
We propose a file structure to index highdimensionality data, typically, points in some feature space. The idea is to use only a few of the features, utilizing additional features whenever the additional discriminatory power is absolutely necessary. We present in detail the design of our tree
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like
FastMap: A Fast Algorithm for Indexing, DataMining and Visualization of Traditional and Multimedia Datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types ..."
Abstract

Cited by 497 (23 self)
 Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
. Another important observation is Parseval's theorem, which specifies that the Fourier transform preserves the Euclidean distance in the time or frequency domain. Having thus mapped sequences to a lowerdimensionality space by using only the first few Fourier coe cients, we use Rtrees to index
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Shape Indexing Using Approximate NearestNeighbour Search in HighDimensional Spaces
, 1997
"... Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of highdimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately, f ..."
Abstract

Cited by 306 (12 self)
 Add to MetaCart
Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of highdimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately
Results 1  10
of
2,055,724