Results 1  10
of
139,589
Efficient Circuits for ExactUniversal Computation with Qudits
 Quantum Information and Computation
"... This paper concerns the efficient implementation of quantum circuits for qudits. We show that controlled twoqudit gates can be implemented without ancillas and prove that the gate library containing arbitrary local unitaries and one twoqudit gate, CINC, is exactuniversal. A recent paper [S.Bulloc ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This paper concerns the efficient implementation of quantum circuits for qudits. We show that controlled twoqudit gates can be implemented without ancillas and prove that the gate library containing arbitrary local unitaries and one twoqudit gate, CINC, is exactuniversal. A recent paper [S
c ○ Rinton Press EFFICIENT CIRCUITS FOR EXACTUNIVERSAL COMPUTATION WITH QUDITS
, 2005
"... This paper concerns the efficient implementation of quantum circuits for qudits. We show that controlled twoqudit gates can be implemented without ancillas and prove that the gate library containing arbitrary local unitaries and one twoqudit gate, CINC, is exactuniversal. A recent paper [S.Bulloc ..."
Abstract
 Add to MetaCart
This paper concerns the efficient implementation of quantum circuits for qudits. We show that controlled twoqudit gates can be implemented without ancillas and prove that the gate library containing arbitrary local unitaries and one twoqudit gate, CINC, is exactuniversal. A recent paper [S
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 514 (41 self)
 Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential input
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including
Efficiently computing static single assignment form and the control dependence graph
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1991
"... In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single ass ..."
Abstract

Cited by 997 (8 self)
 Add to MetaCart
In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
LowPower CMOS Digital Design
 JOURNAL OF SOLIDSTATE CIRCUITS. VOL 27, NO 4. APRIL 1992 413
, 1992
"... Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use the ..."
Abstract

Cited by 570 (20 self)
 Add to MetaCart
Motivated by emerging batteryoperated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for lowpower operation are shown which use
Wattch: A Framework for ArchitecturalLevel Power Analysis and Optimizations
 In Proceedings of the 27th Annual International Symposium on Computer Architecture
, 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract

Cited by 1295 (43 self)
 Add to MetaCart
Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
upper bounds known today. We show that the number of hypotheses that are combined by our algorithm is the smallest number possible. Other outcomes of our analysis are results regarding the representational power of threshold circuits, the relation between learnability and compression, and a method
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Results 1  10
of
139,589