Results 11 - 20
of
19,879
Automatic Subspace Clustering of High Dimensional Data
- Data Mining and Knowledge Discovery
, 2005
"... Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the or ..."
Abstract
-
Cited by 724 (12 self)
- Add to MetaCart
Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity
Distance metric learning, with application to clustering with sideinformation,”
- in Advances in Neural Information Processing Systems 15,
, 2002
"... Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for ..."
Abstract
-
Cited by 818 (13 self)
- Add to MetaCart
Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract
-
Cited by 527 (51 self)
- Add to MetaCart
Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all
Cluster analysis and display of genome-wide expression patterns’,
- Proc. Natl. Acad.
, 1998
"... ABSTRACT A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and th ..."
Abstract
-
Cited by 2895 (44 self)
- Add to MetaCart
ABSTRACT A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering
Laplacian eigenmaps and spectral techniques for embedding and clustering.
- Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract
-
Cited by 668 (7 self)
- Add to MetaCart
in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered. In many areas of artificial intelligence, information
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract
-
Cited by 560 (15 self)
- Add to MetaCart
the computing bandwidth, the communication bandwidth, the communication delay, and the efficiency of coupling communication and computation. Portable parallel algorithms typically adapt to the machine configuration, in terms of these parameters. The utility of the model is demonstrated through examples
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
- In EuroSys
, 2007
"... Dryad is a general-purpose distributed execution engine for coarse-grain data-parallel applications. A Dryad applica-tion combines computational “vertices ” with communica-tion “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract
-
Cited by 762 (27 self)
- Add to MetaCart
-gle computers, through small clusters of computers, to data centers with thousands of computers. The Dryad execution engine handles all the difficult problems of creating a large distributed, concurrent application: scheduling the use of computers and their CPUs, recovering from communication or computer
Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions
- Journal of Machine Learning Research
, 2002
"... This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determined these partitionings. We first identify several application scenarios for the resultant 'knowledge reuse&ap ..."
Abstract
-
Cited by 603 (20 self)
- Add to MetaCart
This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determined these partitionings. We first identify several application scenarios for the resultant 'knowledge reuse
The geometry of graphs and some of its algorithmic applications
- COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graph-theoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract
-
Cited by 524 (19 self)
- Add to MetaCart
their geometric images. In this paper we develop efficient algorithms for em-bedding graphs low-dimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of prob-lems on multicommodity flows, including the Leighton-Rae Theorem [29] and some of its ex
Vogels, U-Net: a user-level network interface for parallel and distributed computing, in:
- Proceedings of the 15th ACM Symposium on Operating System Principles, ACM,
, 1995
"... Abstract The U-Net communication architecture provides processes with a virtual view of a network device to enable user-level access to high-speed communication devices. The architecture, implemented on standard workstations using off-the-shelf ATM communication hardware, removes the kernel from th ..."
Abstract
-
Cited by 597 (17 self)
- Add to MetaCart
, as well as novel abstractions like Active Message can be implemented efficiently. A U-Net prototype on an 8-node ATM cluster of standard workstations achieves 15Mbytes/s TCP bandwidth with 1Kbyte buffers and demonstrates performance equivalent to Meiko CS-2 and TMC CM-5 supercomputers on a set of Split
Results 11 - 20
of
19,879