Results 1 - 10
of
89,215
Efficient Clustering for Orders
"... Lists of ordered objects are widely used as representational forms. Such ordered objects include Web search results or best-seller lists. Clustering is a useful data analysis technique for grouping mutually similar objects. To cluster orders, hierarchical clustering methods have been used together w ..."
Abstract
-
Cited by 10 (2 self)
- Add to MetaCart
Lists of ordered objects are widely used as representational forms. Such ordered objects include Web search results or best-seller lists. Clustering is a useful data analysis technique for grouping mutually similar objects. To cluster orders, hierarchical clustering methods have been used together
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract
-
Cited by 527 (51 self)
- Add to MetaCart
the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its density-based clustering structure. This cluster-ordering
BIRCH: an efficient data clustering method for very large databases
- In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD
, 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multi-dir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract
-
Cited by 576 (2 self)
- Add to MetaCart
is also the first clustering algorithm proposerl in the database area to handle “noise) ’ (data points that are not part of the underlying pattern) effectively. We evaluate BIRCH’S time/space efficiency, data input order sensitivity, and clustering quality through several experiments. We also present a
Automatic Subspace Clustering of High Dimensional Data
- Data Mining and Knowledge Discovery
, 2005
"... Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the or ..."
Abstract
-
Cited by 724 (12 self)
- Add to MetaCart
identical results irrespective of the order in which input records are presented and does not presume any specific mathematical form for data distribution. Through experiments, we show that CLIQUE efficiently finds accurate clusters in large high dimensional datasets.
CURE: An Efficient Clustering Algorithm for Large Data sets
- Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract
-
Cited by 722 (5 self)
- Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
Efficient and Effective Clustering Methods for Spatial Data Mining
, 1994
"... Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which ..."
Abstract
-
Cited by 709 (37 self)
- Add to MetaCart
Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which
Adaptive clustering for mobile wireless networks
- IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract
-
Cited by 561 (11 self)
- Add to MetaCart
This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically
HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks
- IEEE TRANS. MOBILE COMPUTING
, 2004
"... Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed ..."
Abstract
-
Cited by 590 (1 self)
- Add to MetaCart
proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads
Efficient Variants of the ICP Algorithm
- INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract
-
Cited by 718 (5 self)
- Add to MetaCart
to the minimization strategy. We enumerate and classify many of these variants, and evaluate their effect on the speed with which the correct alignment is reached. In order to improve convergence for nearly-flat meshes with small features, such as inscribed surfaces, we introduce a new variant based on uniform
Cluster analysis and display of genome-wide expression patterns’,
- Proc. Natl. Acad.
, 1998
"... ABSTRACT A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and th ..."
Abstract
-
Cited by 2895 (44 self)
- Add to MetaCart
and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen
Results 1 - 10
of
89,215