• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,185,144
Next 10 →

Predictive regressions

by Robert F. Stambaugh - Journal of Financial Economics , 1999
"... When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nite-sample properties, derived here, can depart substantially from the standard regression set ..."
Abstract - Cited by 452 (19 self) - Add to MetaCart
When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nite-sample properties, derived here, can depart substantially from the standard regression

Least angle regression

by Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani - Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract - Cited by 1308 (43 self) - Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm

Applied Nonparametric Regression

by Wolfgang Härdle , 1994
"... ..."
Abstract - Cited by 810 (10 self) - Add to MetaCart
Abstract not found

Regression Shrinkage and Selection Via the Lasso

by Robert Tibshirani - Journal of the Royal Statistical Society, Series B , 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract - Cited by 4055 (51 self) - Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

Regression Models for Categorical Dependent Variables Using Stata

by J. Scott Long, Jeremy Freese , 2001
"... . ..."
Abstract - Cited by 767 (4 self) - Add to MetaCart
Abstract not found

Additive Logistic Regression: a Statistical View of Boosting

by Jerome Friedman, Trevor Hastie, Robert Tibshirani - Annals of Statistics , 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract - Cited by 1719 (25 self) - Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multi-class generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multi-class generalizations of boosting in most...

Constrained model predictive control: Stability and optimality

by D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert - AUTOMATICA , 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract - Cited by 696 (15 self) - Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence

On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes

by Andrew Y. Ng, Michael I. Jordan , 2001
"... We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is i ..."
Abstract - Cited by 513 (8 self) - Add to MetaCart
We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size

Predicting How People Play Games: Reinforcement Learning . . .

by Ido Erev, Alvin E. Roth - AMERICAN ECONOMIC REVIEW , 1998
"... ..."
Abstract - Cited by 607 (23 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 1,185,144
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University