Results 1  10
of
3,557,345
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
ICA, Kernel Methods and Nonnegativity: New Paradigms for Dynamical Component Analysis of fMRI Data
"... Exploratory data–driven techniques or Blind Source Separation (BSS) methods in fMRI data analysis are neither based on explicit signal models nor on the a priori knowledge of the underlying physiological process. One such method is Independent Component Analysis (ICA) which searches for stochastical ..."
Abstract
 Add to MetaCart
Exploratory data–driven techniques or Blind Source Separation (BSS) methods in fMRI data analysis are neither based on explicit signal models nor on the a priori knowledge of the underlying physiological process. One such method is Independent Component Analysis (ICA) which searches
www.elsevier.com/locate/ynimg Dynamical components analysis of fMRI data through kernel PCA
, 2003
"... In parallel with standard modelbased methods for the analysis of fMRI data, exploratory methods—such as PCA, ICA, and clustering—have been developed to give an account of the dataset with minimal priors: no assumption is made on the data content itself, but the data structure is assumed to show som ..."
Abstract
 Add to MetaCart
In parallel with standard modelbased methods for the analysis of fMRI data, exploratory methods—such as PCA, ICA, and clustering—have been developed to give an account of the dataset with minimal priors: no assumption is made on the data content itself, but the data structure is assumed to show
Analysis of fMRI Data by Blind Separation Into Independent Spatial Components
 Human Brain Mapping
, 1998
"... : Current analytical techniques applied to functional magnetic resonance imaging (fMRI) data require a priori knowledge or specific assumptions about the time courses of processes contributing to the measured signals. Here we describe a new method for analyzing fMRI data based on the independent ..."
Abstract

Cited by 309 (18 self)
 Add to MetaCart
component analysis (ICA) algorithm of Bell and Sejnowski ([1995]: Neural Comput 7:11291159). We decomposed eight fMRI data sets from 4 normal subjects performing Stroop colornaming, the Brown and Peterson word/number task, and control tasks into spatially independent components. Each component
EEGLAB: an open source toolbox for analysis of singletrial EEG dynamics including independent component analysis
 J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of singletrial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract

Cited by 836 (44 self)
 Add to MetaCart
information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multitrial ERPimage plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 703 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 553 (26 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse
Eraser: a dynamic data race detector for multithreaded programs
 ACM Transaction of Computer System
, 1997
"... Multithreaded programming is difficult and error prone. It is easy to make a mistake in synchronization that produces a data race, yet it can be extremely hard to locate this mistake during debugging. This paper describes a new tool, called Eraser, for dynamically detecting data races in lockbased ..."
Abstract

Cited by 687 (2 self)
 Add to MetaCart
Multithreaded programming is difficult and error prone. It is easy to make a mistake in synchronization that produces a data race, yet it can be extremely hard to locate this mistake during debugging. This paper describes a new tool, called Eraser, for dynamically detecting data races in lock
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Results 1  10
of
3,557,345