Results 1  10
of
117,388
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
the retention of information over time periods having either fixed or indefinite length. 1 Introduction A major problem in connectionist theory is to develop learning algorithms that can tap the full computational power of neural networks. Much progress has been made with feedforward networks, and attention
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 641 (8 self)
 Add to MetaCart
Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text
Parallel Networks that Learn to Pronounce English Text
 COMPLEX SYSTEMS
, 1987
"... This paper describes NETtalk, a class of massivelyparallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract

Cited by 548 (5 self)
 Add to MetaCart
is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced practice is more effective for longterm retention than massed practice. Network models can be constructed that have the same performance and learning characteristics on a particular
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described, 1
EEGLAB: an open source toolbox for analysis of singletrial EEG dynamics including independent component analysis
 J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of singletrial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract

Cited by 836 (44 self)
 Add to MetaCart
Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of singletrial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multitrial ERPimage plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel and component crosscoherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Toplayer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middlelayer functions allow users to customize data processing using command history and interactive ‘pop ’ functions. Experienced MATLAB users can use EEGLAB data structures and standalone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A ‘plugin ’ facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available
A scaled conjugate gradient algorithm for fast supervised learning
 NEURAL NETWORKS
, 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract

Cited by 441 (0 self)
 Add to MetaCart
A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural
Results 1  10
of
117,388