Results 1  10
of
15,202
Litonly sigma game on a line graph
"... V (Γ) Let Γ be a connected graph. For any x ∈ F2, a move of the litonly sigma game consists of choosing some v ∈ V (Γ) with x(v) = 1 and changing the values of x at all those neighbors of v. An orbit is a maximal V (Γ) subset of F2 any two of which can reach each other by a series of moves. The min ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
to max{ρ(σ 1 (Γ)), b(Γ)}, with equality holding when #V (Γ) is odd. We also show that the minimum light number of the line graph of Γ is b(Γ) when Γ is a tree. If the tree Γ has n ≥ 3 vertices, we prove that the group formed by the moves of the litonly sigma game on the line graph of Γ is the symmetric
A Structural Approach to Operational Semantics
, 1981
"... Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be ..."
Abstract

Cited by 1541 (3 self)
 Add to MetaCart
Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
variety of temporal logic: alternatingtime temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While lineartime and branchingtime logics are natural specification languages
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Results 1  10
of
15,202