Results 1  10
of
174,321
Distributed verification and hardness of distributed approximation
 CoRR
"... We study the verification problem in distributed networks, stated as follows. Let H be a subgraph of a network G where each vertex of G knows which edges incident on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected (every node knows in t ..."
Abstract

Cited by 45 (13 self)
 Add to MetaCart
We study the verification problem in distributed networks, stated as follows. Let H be a subgraph of a network G where each vertex of G knows which edges incident on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected (every node knows
Distributed Verification and Hardness of Distributed Approximation
"... We study the verification problem in distributed networks, stated as follows. Let H be a subgraph of a network G where each vertex of G knows which edges incident on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected. We would like to perf ..."
Abstract
 Add to MetaCart
on the running time of distributed verification algorithms for many fundamental problems such as connectivity, spanning connected subgraph, and s − t cut verification. We then show applications of these results in deriving strong unconditional time lower bounds on the hardness of distributed approximation
Virtual Time and Global States of Distributed Systems
 PARALLEL AND DISTRIBUTED ALGORITHMS
, 1988
"... A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a consiste ..."
Abstract

Cited by 741 (6 self)
 Add to MetaCart
A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network
Knowledge and Common Knowledge in a Distributed Environment
 Journal of the ACM
, 1984
"... : Reasoning about knowledge seems to play a fundamental role in distributed systems. Indeed, such reasoning is a central part of the informal intuitive arguments used in the design of distributed protocols. Communication in a distributed system can be viewed as the act of transforming the system&apo ..."
Abstract

Cited by 577 (55 self)
 Add to MetaCart
: Reasoning about knowledge seems to play a fundamental role in distributed systems. Indeed, such reasoning is a central part of the informal intuitive arguments used in the design of distributed protocols. Communication in a distributed system can be viewed as the act of transforming the system
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1384 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent system. We also show how this approach can be adapted to handle fairness. We argue that our technique can provide a practical alternative to manual proof construction or use of a mechanical theorem prover for verifying many finitestate concurrent systems. Experimental results show that state machines with several hundred states can be checked in a matter of seconds.
Systematic design of program analysis frameworks
 In 6th POPL
, 1979
"... Semantic analysis of programs is essential in optimizing compilers and program verification systems. It encompasses data flow analysis, data type determination, generation of approximate invariant ..."
Abstract

Cited by 771 (52 self)
 Add to MetaCart
Semantic analysis of programs is essential in optimizing compilers and program verification systems. It encompasses data flow analysis, data type determination, generation of approximate invariant
Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems
, 1992
"... We introduce the framework of hybrid automata as a model and specification language for hybrid systems. Hybrid automata can be viewed as a generalization of timed automata, in which the behavior of variables is governed in each state by a set of differential equations. We show that many of the examp ..."
Abstract

Cited by 460 (20 self)
 Add to MetaCart
We introduce the framework of hybrid automata as a model and specification language for hybrid systems. Hybrid automata can be viewed as a generalization of timed automata, in which the behavior of variables is governed in each state by a set of differential equations. We show that many of the examples considered in the workshop can be defined by hybrid automata. While the reachability problem is undecidable even for very restricted classes of hybrid automata, we present two semidecision procedures for verifying safety properties of piecewiselinear hybrid automata, in which all variables change at constant rates. The two procedures are based, respectively, on minimizing and computing fixpoints on generally infinite state spaces. We show that if the procedures terminate, then they give correct answers. We then demonstrate that for many of the typical workshop examples, the procedures do terminate and thus provide an automatic way for verifying their properties. 1 Introduction More and...
LEAP: Efficient Security Mechanisms for Largescale Distributed Sensor Networks
, 2003
"... Protocol), a key management protocol for sensor networks that is designed to support innetwork processing, while at the same time restricting the security impact of a node compromise to the immediate network neighborhood of the compromised node. The design of the protocol is motivated by the observ ..."
Abstract

Cited by 458 (22 self)
 Add to MetaCart
Protocol), a key management protocol for sensor networks that is designed to support innetwork processing, while at the same time restricting the security impact of a node compromise to the immediate network neighborhood of the compromised node. The design of the protocol is motivated by the observation that different types of messages exchanged between sensor nodes have different security requirements, and that a single keying mechanism is not suitable for meeting these different security requirements. LEAP supports the establishment of four types of keys for each sensor node – an individual key shared with the base station, a pairwise key shared with another sensor node, a cluster key shared with multiple neighboring nodes, and a group key that is shared by all the nodes in the network. The protocol used for establishing and updating these keys
Results 1  10
of
174,321