Results 1  10
of
874,923
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract

Cited by 747 (6 self)
 Add to MetaCart
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF
Uncertainty principles and ideal atomic decomposition
 IEEE Transactions on Information Theory
, 2001
"... Suppose a discretetime signal S(t), 0 t<N, is a superposition of atoms taken from a combined time/frequency dictionary made of spike sequences 1ft = g and sinusoids expf2 iwt=N) = p N. Can one recover, from knowledge of S alone, the precise collection of atoms going to make up S? Because every d ..."
Abstract

Cited by 588 (19 self)
 Add to MetaCart
/frequency dictionary, then there is only one such highly sparse representation of S, and it can be obtained by solving the convex optimization problem of minimizing the `1 norm of the coe cients among all decompositions. Here \highly sparse " means that Nt + Nw < p N=2 where Nt is the number of time atoms, Nw
A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking
 IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and nonGaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data online as it arrives, both from the point of view o ..."
Abstract

Cited by 1974 (2 self)
 Add to MetaCart
(or “particle”) representations of probability densities, which can be applied to any statespace model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1032 (76 self)
 Add to MetaCart
been employed in the deterministic filtering literature; these lead to very effective importance distributions. Furthermore we describe a method which uses RaoBlackwellisation in order to take advantage of the analytic structure present in some important classes of statespace models. In a final
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Results 1  10
of
874,923