Results 1  10
of
1,090,339
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 622 (13 self)
 Add to MetaCart
databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
A Comparative Study on Feature Selection in Text Categorization
, 1997
"... This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI), ..."
Abstract

Cited by 1294 (15 self)
 Add to MetaCart
This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new
Usability Analysis of Visual Programming Environments: a `cognitive dimensions' framework
 JOURNAL OF VISUAL LANGUAGES AND COMPUTING
, 1996
"... The cognitive dimensions framework is a broadbrush evaluation technique for interactive devices and for noninteractive notations. It sets out a small vocabulary of terms designed to capture the cognitivelyrelevant aspects of structure, and shows how they can be traded off against each other. T ..."
Abstract

Cited by 510 (13 self)
 Add to MetaCart
The cognitive dimensions framework is a broadbrush evaluation technique for interactive devices and for noninteractive notations. It sets out a small vocabulary of terms designed to capture the cognitivelyrelevant aspects of structure, and shows how they can be traded off against each other
Verb Semantics And Lexical Selection
, 1994
"... ... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semanticsyntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor and new ..."
Abstract

Cited by 520 (4 self)
 Add to MetaCart
and new usages; imprecise lexical selection and insufficient system coverage. It seems one approach is to apply probability methods and statistical models for some of these problems. However, the question reminds: has PSR exhausted the potential of the knowledgebased approach? If not, are there any
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a preliminary theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled d...
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
in discrete time (the algebraic view), then progresses to the view of it in continuous time (the analytical view). A 5dimensional depiction is developed, which completely describes the system. These analyses lead to a generalized model of the algorithm, containing a set of coefficients to control the system
Results 1  10
of
1,090,339