Results 1  10
of
360,017
Minimax Programs
 University of California Press
, 1997
"... We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting spec ..."
Abstract

Cited by 475 (5 self)
 Add to MetaCart
We introduce an optimization problem called a minimax program that is similar to a linear program, except that the addition operator is replaced in the constraint equations by the maximum operator. We clarify the relation of this problem to some betterknown problems. We identify an interesting
Machine Learning in Automated Text Categorization
 ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract

Cited by 1658 (22 self)
 Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a problem in o very short time. One kind of computation for which massively porollel networks appear to be well suited is large constraint satisfaction searches, but to use the connections efficiently two conditions must be met: First, a search technique that is suitable for parallel networks must be found. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the constraints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using the preexisting connectivity structure. 1.
Sketchpad: A manmachine graphical communication system
, 2003
"... The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical, and ..."
Abstract

Cited by 702 (6 self)
 Add to MetaCart
The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical, and animated drawings; it is a general purpose system. Sketchpad has shown the most usefulness as an aid to the understanding of processes, such as the notion of linkages, which can be described with pictures. Sketchpad also makes it easy to draw highly repetitive or highly accurate drawings and to change drawings previously drawn with it. The many drawings in this thesis were all made with Sketchpad.
Software pipelining: An effective scheduling technique for VLIW machines
, 1988
"... This paper shows that software pipelining is an effective and viable scheduling technique for VLIW processors. In software pipelining, iterations of a loop in the source program are continuously initiated at constant intervals, before the preceding iterations complete. The advantage of software pipe ..."
Abstract

Cited by 579 (3 self)
 Add to MetaCart
hierarchical reduction scheme whereby entire control constructs are reduced to an object similar to an operation in a basic block. With this scheme, all innermost loops, including those containing conditional statements, can be software pipelined. It also diminishes the startup cost of loops with small
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such \TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classication, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire 1996, and Frie...
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass
Space/Time Tradeoffs in Hash Coding with Allowable Errors
 Communications of the ACM
, 1970
"... this paper tradeoffs among certain computational factors in hash coding are analyzed. The paradigm problem considered is that of testing a series of messages onebyone for membership in a given set of messages. Two new hash coding methods are examined and compared with a particular conventional h ..."
Abstract

Cited by 2067 (0 self)
 Add to MetaCart
hashcoding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 887 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try
Results 1  10
of
360,017