Results 1  10
of
154,287
FR +E N
, 2013
"... Delaunay stability via perturbations JeanDaniel Boissonnat, Ramsay Dyer, Arijit Ghosh ha l0 ..."
Abstract
 Add to MetaCart
Delaunay stability via perturbations JeanDaniel Boissonnat, Ramsay Dyer, Arijit Ghosh ha l0
+E
, 2013
"... Delaunay stability via perturbations JeanDaniel Boissonnat, Ramsay Dyer, Arijit Ghosh ar X iv ..."
Abstract
 Add to MetaCart
Delaunay stability via perturbations JeanDaniel Boissonnat, Ramsay Dyer, Arijit Ghosh ar X iv
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
and/or timevarying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill
Functional discovery via a compendium of expression profiles. Cell 102:109
, 2000
"... have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of ..."
Abstract

Cited by 537 (8 self)
 Add to MetaCart
have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of
Smooth Stabilization Implies Coprime Factorization
, 1989
"... This paper shows that coprime right factorizations exist for the input to state mapping of a continuous time nonlinear system provided that the smooth feedback stabilization problem be solvable for this system. In particular, it follows that feedback linearizable systems admit such factorizations. I ..."
Abstract

Cited by 459 (62 self)
 Add to MetaCart
perturbations analogous to those studied in operator theoretic approaches to systems; it states that smooth stabilization implies smooth inputtostate stabilization. 1 Introduction Constructions of coprime factorizations for nonlinear systems have been obtained of late in the literature ([10], [12], [8
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract

Cited by 724 (33 self)
 Add to MetaCart
Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and Ftheory compactifications on CalabiYau fourfolds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the KlebanovStrassler gravity dual to a confining N = 1 supersymmetric gauge theory, and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugategradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is based on relative coordinates that are simply the distances from a host to some special network nodes. We propose the second mechanism, called Global Network Positioning (GNP), which is based on absolute coordinates computed from modeling the Internet as a geometric space. Since end hosts maintain their own coordinates, these approaches allow end hosts to compute their interhost distances as soon as they discover each other. Moreover coordinates are very efficient in summarizing interhost distances, making these approaches very scalable. By performing experiments using measured Internet distance data, we show that both coordinatesbased schemes are more accurate than the existing state of the art system IDMaps, and the GNP approach achieves the highest accuracy and robustness among them.
Results 1  10
of
154,287