Results 1  10
of
32,288
Discrete DifferentialGeometry Operators for Triangulated 2Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract

Cited by 453 (17 self)
 Add to MetaCart
This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed FiniteElement/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators.
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
are given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can be attributed
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 711 (0 self)
 Add to MetaCart
algorithms for convex hull and Delaunay triangulation. We provide empirical evidence that the algorithm runs faster when the input contains nonextreme points and that it uses less memory. Computational geometry algorithms have traditionally assumed that input sets are well behaved. When an algorithm
Delaunay triangulations and Voronoi diagrams for Riemannian manifolds
 ACM SYMPOSIUM ON COMPUTATIONAL GEOMETRY
, 2000
"... For a sufficiently dense set of points in any closed Riemannian manifold, we prove that a unique Delaunay triangulation exists. This triangulation has the same properties as in Euclidean space. Algorithms for constructing these triangulations will also be described. ..."
Abstract

Cited by 78 (1 self)
 Add to MetaCart
For a sufficiently dense set of points in any closed Riemannian manifold, we prove that a unique Delaunay triangulation exists. This triangulation has the same properties as in Euclidean space. Algorithms for constructing these triangulations will also be described.
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Constrained Delaunay triangulations
 Algorithmica
, 1989
"... Given a set of n vertices in the plane together with a set of noncrossing edges, the constrained Delaunay triangulation (CDT) is the triangulation of the vertices with the following properties: (1) the prespecified edges are included in the triangulation, and (2) it is as close as possible to the De ..."
Abstract

Cited by 217 (5 self)
 Add to MetaCart
Given a set of n vertices in the plane together with a set of noncrossing edges, the constrained Delaunay triangulation (CDT) is the triangulation of the vertices with the following properties: (1) the prespecified edges are included in the triangulation, and (2) it is as close as possible
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which
Directional Statistics and Shape Analysis
, 1995
"... There have been various developments in shape analysis in the last decade. We describe here some relationships of shape analysis with directional statistics. For shape, rotations are to be integrated out or to be optimized over whilst they are the basis for directional statistics. However, various c ..."
Abstract

Cited by 775 (31 self)
 Add to MetaCart
to shape analysis. Note that the idea of using tangent space for analysis is common to both manifold as well. 1 Introduction Consider shapes of configurations of points in Euclidean space. There are various contexts in which k labelled points (or "landmarks") x 1 ; :::; x k in IR m are given
Results 1  10
of
32,288