Results 1  10
of
348,164
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
The LargeScale Organization of Metabolic Networks
, 2000
"... In a cell or microorganism the processes that generate mass, energy, information transfer, and cell fate specification are seamlessly integrated through a complex network of various cellular constituents and reactions. However, despite the key role these networks play in sustaining various cellular ..."
Abstract

Cited by 599 (7 self)
 Add to MetaCart
functions, their largescale structure is essentially unknown. Here we present the first systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variances in their individual constituents and pathways
The Digital Michelangelo Project: 3D Scanning of Large Statues
, 2000
"... We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merg ..."
Abstract

Cited by 488 (8 self)
 Add to MetaCart
We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 263 (16 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks
, 1997
"... We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporallyordered sequence of diffusing computations; each computat ..."
Abstract

Cited by 1095 (6 self)
 Add to MetaCart
computation consisting of a sequence of directed l i nk reversals. The protocol is highly adaptive, efficient and scalable; being bestsuited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass
Results 1  10
of
348,164