• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 154,986
Next 10 →

A fast learning algorithm for deep belief nets

by Geoffrey E. Hinton, Simon Osindero - Neural Computation , 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract - Cited by 930 (51 self) - Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 586 (13 self) - Add to MetaCart
to a gen-eral learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning

The use of the area under the ROC curve in the evaluation of machine learning algorithms

by Andrew P. Bradley - Pattern Recognition , 1997
"... Abstract--In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Percept ..."
Abstract - Cited by 664 (3 self) - Add to MetaCart
Abstract--In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi

The Structure-Mapping Engine: Algorithm and Examples

by Brian Falkenhainer, Kenneth D. Forbus, Dedre Gentner - Artificial Intelligence , 1989
"... This paper describes the Structure-Mapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract - Cited by 512 (115 self) - Add to MetaCart
flexibility enhances cognitive simulation studies by simplifying experimentation. Furthermore, SME is very efficient, making it a useful component in machine learning systems as well. We review the Structure-mapping theory and describe the design of the engine. We analyze the complexity of the algorithm

Learning probabilistic relational models

by Nir Friedman, Lise Getoor, Daphne Koller, Avi Pfeffer - In IJCAI , 1999
"... A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract - Cited by 619 (31 self) - Add to MetaCart
A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much

Semi-Supervised Learning Literature Survey

by Xiaojin Zhu , 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract - Cited by 757 (8 self) - Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting

by Yoav Freund, Robert E. Schapire , 1996
"... ..."
Abstract - Cited by 3437 (65 self) - Add to MetaCart
Abstract not found

Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews

by Peter Turney , 2002
"... This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A ..."
Abstract - Cited by 741 (5 self) - Add to MetaCart
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs
Next 10 →
Results 1 - 10 of 154,986
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University