Results 1  10
of
509,914
Decoding Choice Encodings
, 1999
"... We study two encodings of the asynchronous #calculus with inputguarded choice into its choicefree fragment. One encoding is divergencefree, but refines the atomic commitment of choice into gradual commitment. The other preserves atomicity, but introduces divergence. The divergent encoding is ..."
Abstract

Cited by 108 (5 self)
 Add to MetaCart
branching decisions. The correctness proofs for the two choice encodings introduce a novel proof technique exploiting the properties of explicit decodings from translations to source terms.
Near Shannon limit errorcorrecting coding and decoding
, 1993
"... Abstract This paper deals with a new class of convolutional codes called Turbocodes, whose performances in terms of Bit Error Rate (BER) are close to the SHANNON limit. The TurboCode encoder is built using a parallel concatenation of two Recursive Systematic Convolutional codes and the associated ..."
Abstract

Cited by 1738 (5 self)
 Add to MetaCart
and the associated decoder, using a feedback decoding rule, is implemented as P pipelined identical elementary decoders. Consider a binary rate R=1/2 convolutional encoder with constraint length K and memory M=K1. The input to the encoder at time k is a bit dk and the corresponding codeword
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1055 (1 self)
 Add to MetaCart
AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
The xKernel: An Architecture for Implementing Network Protocols
 IEEE Transactions on Software Engineering
, 1991
"... This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough to acc ..."
Abstract

Cited by 663 (21 self)
 Add to MetaCart
, and manage the encoding and decoding of data. To help manage this complexity, network software is divi...
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel
Spacetime codes for high data rate wireless communication: Performance criterion and code construction
 IEEE TRANS. INFORM. THEORY
, 1998
"... We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit ant ..."
Abstract

Cited by 1762 (28 self)
 Add to MetaCart
for high data rate wireless communication. The encoding/decoding complexity of these codes is comparable to trellis codes employed in practice over Gaussian channels. The codes constructed here provide the best tradeoff between data rate, diversity advantage, and trellis complexity. Simulation results
Spacetime block codes from orthogonal designs
 IEEE Trans. Inform. Theory
, 1999
"... Abstract — We introduce space–time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space–time block code and the encoded data is split into � streams which are simultaneously transmitted using � transmit antennas. ..."
Abstract

Cited by 1509 (42 self)
 Add to MetaCart
Abstract — We introduce space–time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space–time block code and the encoded data is split into � streams which are simultaneously transmitted using � transmit antennas
Raptor codes
 IEEE Transactions on Information Theory
, 2006
"... LTCodes are a new class of codes introduced in [1] for the purpose of scalable and faulttolerant distribution of data over computer networks. In this paper we introduce Raptor Codes, an extension of LTCodes with linear time encoding and decoding. We will exhibit a class of universal Raptor codes: ..."
Abstract

Cited by 567 (6 self)
 Add to MetaCart
LTCodes are a new class of codes introduced in [1] for the purpose of scalable and faulttolerant distribution of data over computer networks. In this paper we introduce Raptor Codes, an extension of LTCodes with linear time encoding and decoding. We will exhibit a class of universal Raptor codes
Results 1  10
of
509,914