Results 1  10
of
2,135
Gaussian processes for machine learning
, 2003
"... We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters us ..."
Abstract

Cited by 720 (2 self)
 Add to MetaCart
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
A Bayesian computer vision system for modeling human interactions
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... We describe a realtime computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task [1]. The system is particularly concerned with detecting when interactions between people occur and classifying the type of interaction. Examples of interes ..."
Abstract

Cited by 538 (6 self)
 Add to MetaCart
different statebased learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and accurately. Finally, to deal with the problem of limited training data, a synthetic ªAlifestyleº training system is used to develop
Support Vector Machines for Classification and Regression
 UNIVERSITY OF SOUTHAMPTON, TECHNICAL REPORT
, 1998
"... The problem of empirical data modelling is germane to many engineering applications.
In empirical data modelling a process of induction is used to build up a model of the
system, from which it is hoped to deduce responses of the system that have yet to be observed.
Ultimately the quantity and qualit ..."
Abstract

Cited by 357 (5 self)
 Add to MetaCart
on the training data. It is this difference
which equips SVM with a greater ability to generalise, which is the goal in statistical
learning. SVMs were developed to solve the classification problem, but recently they
have been extended to the domain of regression problems (Vapnik et al., 1997). In the
literature
Large scale multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernelbased learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract

Cited by 340 (20 self)
 Add to MetaCart
with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million realworld splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 330 (31 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order
Correlationbased feature selection for discrete and numeric class machine learning
, 2000
"... Algorithms for feature selection fall into two broad categories: wrappers use the learning algorithm itself to evaluate the usefulness of features, while lters evaluate features according to heuristics based on general characteristics of the data. For application to large databases, lters have prove ..."
Abstract

Cited by 267 (2 self)
 Add to MetaCart
method as a preprocessing step for naive Bayes, instancebased learning, decision trees, locally weighted regression, and model trees show it to be an e ective feature selectorit reduces the data in dimensionality by more than sixty percent in most cases without negatively a ecting accuracy. Also
Fields of experts: A framework for learning image priors
 In CVPR
, 2005
"... We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov Random Field (MRF) models by learning potential functions over extended pixel neighborhood ..."
Abstract

Cited by 292 (4 self)
 Add to MetaCart
neighborhoods. Field potentials are modeled using a ProductsofExperts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities
Support vector machines: Training and applications
 A.I. MEMO 1602, MIT A. I. LAB
, 1997
"... The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perc ..."
Abstract

Cited by 223 (3 self)
 Add to MetaCart
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi
Learning Bayesian Networks With Local Structure
, 1996
"... . We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This inc ..."
Abstract

Cited by 272 (12 self)
 Add to MetaCart
. This increases the space of possible models, enabling the representation of CPDs with a variable number of parameters. The resulting learning procedure induces models that better emulate the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local
Results 1  10
of
2,135