Results 1  10
of
415,813
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Fast Planning Through Planning Graph Analysis
 ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid pla ..."
Abstract

Cited by 1165 (3 self)
 Add to MetaCart
We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
curvature flow operator that achieves a smoothing of the shape itself, distinct from any parameterization. Additional features of the algorithm include automatic exact volume preservation, and hard and soft constraints on the positions of the points in the mesh. We compare our method to previous operators
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 622 (2 self)
 Add to MetaCart
The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade
Fronts propagating with curvature dependent speed: algorithms based on Hamiltonâ€“Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal
Plans And ResourceBounded Practical Reasoning
 COMPUTATIONAL INTELLIGENCE, 4(4):349355, 1988
, 1988
"... An architecture for a rational agent must allow for meansend reasoning, for the weighing of competing alternatives, and for interactions between these two forms of reasoning. Such an architecture must also address the problem of resource boundedness. We sketch a solution of the first problem that p ..."
Abstract

Cited by 485 (19 self)
 Add to MetaCart
that points the way to a solution of the second. In particular, we present a highlevel specification of the practicalreasoning component of an architecture for a resourcebounded rational agent. In this architecture, a major role of the agent's plans is to constrain the amount of further practical
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose
Results 1  10
of
415,813