Results 1  10
of
131,935
Triangular norms on . . .
"... Tnorms with vector arguments are introduced and investigated. Direct products of tnorms on the unit interval are characterized. Tnorms without zero divisors, pseudoArchimedean tnorms and cancellative tnorms are discussed. Some open problems are stated. ..."
Abstract

Cited by 409 (28 self)
 Add to MetaCart
Tnorms with vector arguments are introduced and investigated. Direct products of tnorms on the unit interval are characterized. Tnorms without zero divisors, pseudoArchimedean tnorms and cancellative tnorms are discussed. Some open problems are stated.
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Multiresolution Analysis of Arbitrary Meshes
, 1995
"... In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multire ..."
Abstract

Cited by 605 (16 self)
 Add to MetaCart
In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
the variation in the perturbed quantity. Up to the higherorder terms that are ignored in the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms of norms. The technique is applied to a number of problems in matrix perturbation theory, including least squares
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
, 1998
"... SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This pape ..."
Abstract

Cited by 1334 (4 self)
 Add to MetaCart
SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fairing, to lowpass filtering. We describe a very simple surface signal lowpass filter algorithm that applies to surfaces of arbitrary topology. As opposed to other existing optimizationbased fairing methods, which are computationally more expensive, this is a linear time and space complexity algorithm. With this algorithm, fairing very large surfaces, such as those obtained from volumetric medical data, becomes affordable. By combining this algorithm with surface subdivision methods we obtain a very effective fair surface design technique. We then extend the analysis, and modify the algorithm accordingly, to accommodate different types of constraints. Some constraints can be imposed without any modification of the algorithm, while others require the solution of a small associated linear system of equations. In particular, vertex location constraints, vertex normal constraints, and surface normal discontinuities across curves embedded in the surface, can be imposed with this technique. CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/image generation  display algorithms; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling  curve, surface, solid, and object representations;J.6[Com puter Applications]: ComputerAided Engineering  computeraided design General Terms: Algorithms, Graphics. 1
Basecalling of automated sequencer traces using phred. I. Accuracy Assessment
 GENOME RES
, 1998
"... The availability of massive amounts of DNA sequence information has begun to revolutionize the practice of biology. As a result, current largescale sequencing output, while impressive, is not adequate to keep pace with growing demand and, in particular, is far short of what will be required to obta ..."
Abstract

Cited by 1602 (4 self)
 Add to MetaCart
The availability of massive amounts of DNA sequence information has begun to revolutionize the practice of biology. As a result, current largescale sequencing output, while impressive, is not adequate to keep pace with growing demand and, in particular, is far short of what will be required to obtain the 3billionbase human genome sequence by the target date of 2005. To reach this goal, improved automation will be essential, and it is particularly important that human involvement in sequence data processing be significantly reduced or eliminated. Progress in this respect will require both improved accuracy of the data processing software and reliable accuracy measures to reduce the need for human involvement in error correction and make human review more efficient. Here, we describe one step toward that goal: a basecalling program for automated sequencer traces, phred, with improved accuracy. phred appears to be the first basecalling program to achieve a lower error rate than the ABI software, averaging 40%–50 % fewer errors in the data sets examined independent of position in read, machine running conditions, or sequencing chemistry.
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
Wireless Communications
, 2005
"... Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University ..."
Abstract

Cited by 1129 (32 self)
 Add to MetaCart
Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University
Results 1  10
of
131,935