Results 1  10
of
7,455,879
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
Covering Many or Few Points with Unit Disks
, 2006
"... Let P be a set of n weighted points and let X be a constantcomplexity region in the plane. We study approximation algorithms for the following two continuous facilitylocation problems. In the first problem we want to place m unit disks, for a given constant m> 1, such that their centers are in ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Let P be a set of n weighted points and let X be a constantcomplexity region in the plane. We study approximation algorithms for the following two continuous facilitylocation problems. In the first problem we want to place m unit disks, for a given constant m> 1, such that their centers
Introduction to redundant arrays of inexpensive disks
 Proceedings of the IEEE COMPCON
, 1989
"... Abstract Increasmg performance of CPUs and memorres wrll be squandered lf not matched by a sunrlm peformance ourease m II0 Whde the capactty of Smgle Large Expenstve D&T (SLED) has grown rapuily, the performance rmprovement of SLED has been modest Redundant Arrays of Inexpensive Disks (RAID), ba ..."
Abstract

Cited by 846 (55 self)
 Add to MetaCart
Abstract Increasmg performance of CPUs and memorres wrll be squandered lf not matched by a sunrlm peformance ourease m II0 Whde the capactty of Smgle Large Expenstve D&T (SLED) has grown rapuily, the performance rmprovement of SLED has been modest Redundant Arrays of Inexpensive Disks (RAID
GPFS: A SharedDisk File System for Large Computing Clusters
 In Proceedings of the 2002 Conference on File and Storage Technologies (FAST
, 2002
"... GPFS is IBM's parallel, shareddisk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community ove ..."
Abstract

Cited by 518 (3 self)
 Add to MetaCart
GPFS is IBM's parallel, shareddisk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text classification where the there is a large number of classes and a huge number of relevant features needed to distinguish between them. We propose an approach that utilizes the hierarchical topic structure to decompose the classification task into a set of simpler problems, one at each node in the classification tree. As we show, each of these smaller problems can be solved accurately by focusing only on a very small set of features, those relevant to the task at hand. This set of relevant features varies widely throughout the hierarchy, so that, while the overall relevant feature set may be large, each classifier only examines a small subset. The use of reduced feature sets allows us to util...
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NP
The many faces of Publish/Subscribe
, 2003
"... This paper factors out the common denominator underlying these variants: full decoupling of the communicating entities in time, space, and synchronization. We use these three decoupling dimensions to better identify commonalities and divergences with traditional interaction paradigms. The many v ..."
Abstract

Cited by 727 (23 self)
 Add to MetaCart
This paper factors out the common denominator underlying these variants: full decoupling of the communicating entities in time, space, and synchronization. We use these three decoupling dimensions to better identify commonalities and divergences with traditional interaction paradigms. The many
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 622 (2 self)
 Add to MetaCart
The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade in 1981. The method defines the measure of match between fixedsize feature windows in the past and current frame as the sum of squared intensity differences over the windows. The displacement is then defined as the one that minimizes this sum. For small motions, a linearization of the image intensities leads to a NewtonRaphson style minimization. In this report, after rederiving the method in a physically intuitive way, we answer the crucial question of how to choose the feature windows that are best suited for tracking. Our selection criterion is based directly on the definition of the tracking algorithm, and expresses how well a feature can be tracked. As a result, the criterion is optima...
From Few to many: Illumination cone models for face recognition under variable lighting and pose
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract

Cited by 747 (12 self)
 Add to MetaCart
We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render—or synthesize—images of the face under novel poses and illumination conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a lowdimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone (based on Euclidean distance within the image space). We test our face recognition method on 4050 images from the Yale Face Database B; these images contain 405 viewing conditions (9 poses ¢ 45 illumination conditions) for 10 individuals. The method performs almost without error, except on the most extreme lighting directions, and significantly outperforms popular recognition methods that do not use a generative model.
Results 1  10
of
7,455,879