Results 1  10
of
1,472
Convex relaxations for permutation problems
"... Abstract. Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing, for example. We write seriation as an optimization problem by proving the equivalence between the seriatio ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
the seriation and combinatorial 2SUM problems on similarity matrices (2SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case, and we derive several convex relaxations for 2SUM to improve the robustness
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 483 (2 self)
 Add to MetaCart
that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
The Power of Convex Relaxation: NearOptimal Matrix Completion
, 2009
"... This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In ..."
Abstract

Cited by 359 (7 self)
 Add to MetaCart
This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds
Semidefinite Programming Relaxations for Semialgebraic Problems
, 2001
"... A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The mai ..."
Abstract

Cited by 365 (23 self)
 Add to MetaCart
A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
, 2004
"... Abstract. A simultaneous sparse approximation problem requests a good approximation of several input signals at once using different linear combinations of the same elementary signals. At the same time, the problem balances the error in approximation against the total number of elementary signals th ..."
Abstract

Cited by 366 (5 self)
 Add to MetaCart
problems. The second part of the paper develops another algorithmic approach called convex relaxation, and it provides theoretical results on the performance of convex relaxation for simultaneous sparse approximation. Date: Typeset on March 17, 2005. Key words and phrases. Greedy algorithms, Orthogonal
Minwise Independent Permutations
 Journal of Computer and System Sciences
, 1998
"... We define and study the notion of minwise independent families of permutations. We say that F ⊆ Sn is minwise independent if for any set X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have Pr(min{π(X)} = π(x)) = 1 X . In other words we require that all the elements of any fixed set ..."
Abstract

Cited by 276 (11 self)
 Add to MetaCart
We define and study the notion of minwise independent families of permutations. We say that F ⊆ Sn is minwise independent if for any set X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have Pr(min{π(X)} = π(x)) = 1 X . In other words we require that all the elements of any fixed set
Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2008
"... We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added ℓ1norm penalty term. The problem as formulated is convex but the memor ..."
Abstract

Cited by 334 (2 self)
 Add to MetaCart
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added ℓ1norm penalty term. The problem as formulated is convex
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 189 (20 self)
 Add to MetaCart
are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems
Results 1  10
of
1,472