Results 1  10
of
415,664
Convergence of Discrete MDL for Sequential Prediction
, 2004
"... We study the properties of the Minimum Description Length principle for sequence prediction, considering a twopart MDL estimator which is chosen from a countable class of models. This applies in particular to the important case of universal sequence prediction, where the model class corresponds to ..."
Abstract
 Add to MetaCart
characterizing the convergence speed for MDL predictions is exponentially larger as compared to Bayes mixtures. We observe that there are at least three different ways of using MDL for prediction. One of these has worse prediction properties, for which predictions only converge if the MDL estimator stabilizes
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1032 (76 self)
 Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract

Cited by 778 (21 self)
 Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum
Convergent Treereweighted Message Passing for Energy Minimization
 ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract

Cited by 491 (16 self)
 Add to MetaCart
on the energy. However, the algorithm is not guaranteed to increase this bound it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential treereweighted message passing. Its main property is that the bound is guaranteed
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 782 (22 self)
 Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly timevarying environment.
Predictive reward signal of dopamine neurons
 Journal of Neurophysiology
, 1998
"... Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs ..."
Abstract

Cited by 717 (12 self)
 Add to MetaCart
Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled
Results 1  10
of
415,664