Results 1  10
of
82,855
Convergence and Compactness of Families of Proper Plants in the Graph Topology
"... Abstract — The graph topology plays a central role in characterizing the robustness of feedback systems. In particular, it provides necessary and sufficient conditions for the transfer matrix of a stabilized closedloop system to be continuous with respect to the controller. If in addition we confi ..."
Abstract
 Add to MetaCart
confine our attention to a compact set of controllers, we can draw much stronger conclusions, for example, the uniform continuity of the closedloop transfer matrix. This motivates a detailed study of convergence in the graph topology, and a characterization of compactness in this topology. Readily
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional Chern
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
Results 1  10
of
82,855