Results 1  10
of
129,213
Distance Browsing in Spatial Databases
, 1999
"... Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is kn ..."
Abstract

Cited by 390 (20 self)
 Add to MetaCart
, the k +1 st neighbor can be obtained without having to calculate the k +1nearest neighbors from scratch. The incremental approach finds use when processing complex queries where one of the conditions involves spatial proximity (e.g., the nearest city to Chicago with population greater than a million
When Is "Nearest Neighbor" Meaningful?
 In Int. Conf. on Database Theory
, 1999
"... . We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance ..."
Abstract

Cited by 402 (1 self)
 Add to MetaCart
. We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches
Efficient and Effective Querying by Image Content
 Journal of Intelligent Information Systems
, 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include med ..."
Abstract

Cited by 500 (13 self)
 Add to MetaCart
In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include
Continuous Obstructed Nearest Neighbor Queries in Spatial Databases
"... In this paper, we study a novel form of continuous nearest neighbor queries in the presence of obstacles, namely continuous obstructed nearest neighbor (CONN) search. It considers the impact of obstacles on the distance between objects, which is ignored by most of spatial queries. Given a data set P ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
In this paper, we study a novel form of continuous nearest neighbor queries in the presence of obstacles, namely continuous obstructed nearest neighbor (CONN) search. It considers the impact of obstacles on the distance between objects, which is ignored by most of spatial queries. Given a data set
Visible Nearest Neighbor Queries
"... Abstract. We introduce the visible k nearest neighbor (VkNN) query, which finds the k nearest objects that are visible to a query point. We also propose an algorithm to efficiently process the VkNN query. We compute the visible neighbors incrementally as we enlarge the search space. Our algorithm dr ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract. We introduce the visible k nearest neighbor (VkNN) query, which finds the k nearest objects that are visible to a query point. We also propose an algorithm to efficiently process the VkNN query. We compute the visible neighbors incrementally as we enlarge the search space. Our algorithm
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong
Continuous Nearest Neighbor Search
, 2002
"... A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., "find all my nearest gas stations during my route from point s to point e"). The result contains a set of <point, interval> tuples, such that point is the NN of all po ..."
Abstract

Cited by 159 (10 self)
 Add to MetaCart
A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., "find all my nearest gas stations during my route from point s to point e"). The result contains a set of <point, interval> tuples, such that point is the NN of all
The Cougar Approach to InNetwork Query Processing in Sensor Networks
 SIGMOD Record
, 2002
"... The widespread distribution and availability of smallscale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as te ..."
Abstract

Cited by 491 (1 self)
 Add to MetaCart
the data is aggregated and stored for offline querying and analysis. This approach has two major drawbacks. First, the user cannot change the behavior of the system on the fly. Second, conservation of battery power is a major design factor, but a central system cannot make use of innetwork programming
Range nearestneighbor query
 IEEE Transactions on Knowledge and Data Engineering (TKDE
"... A range nearestneighbor (RNN) query retrieves the nearest neighbor (NN) for every point in a range. It is a natural generalization of point and continuous nearestneighbor queries and has many applications. In this paper, we consider the ranges as (hyper)rectangles and propose efficient inmemory ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
A range nearestneighbor (RNN) query retrieves the nearest neighbor (NN) for every point in a range. It is a natural generalization of point and continuous nearestneighbor queries and has many applications. In this paper, we consider the ranges as (hyper)rectangles and propose efficient in
Discriminant Adaptive Nearest Neighbor Classification
, 1994
"... Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant an ..."
Abstract

Cited by 322 (1 self)
 Add to MetaCart
Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant
Results 1  10
of
129,213