Results 1  10
of
1,376,341
Contextual Word Similarity and Estimation from Sparse Data
, 1995
"... In recent years there is much interest in word cooccurrence relations, such as ngrams, verbobject combinations, or cooccurrence within a limited context. This paper discusses how to estimate the likelihood of cooccurrences that do not occur in the training data. We present a method that makes loca ..."
Abstract

Cited by 93 (5 self)
 Add to MetaCart
In recent years there is much interest in word cooccurrence relations, such as ngrams, verbobject combinations, or cooccurrence within a limited context. This paper discusses how to estimate the likelihood of cooccurrences that do not occur in the training data. We present a method that makes
Contextual Word Similarity And Estimation From Sparse Data
, 1993
"... In recent years there is much interest in word cooccurrence relations, such as ngrams, verbobject combinations, or cooccurrence within a limited context. This paper discusses how to estimate the probability of cooccurrences that do not occur in the training data. We present a method that makes loca ..."
Abstract
 Add to MetaCart
In recent years there is much interest in word cooccurrence relations, such as ngrams, verbobject combinations, or cooccurrence within a limited context. This paper discusses how to estimate the probability of cooccurrences that do not occur in the training data. We present a method that makes
Automatic Word Sense Discrimination
 Journal of Computational Linguistics
, 1998
"... This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which closen ..."
Abstract

Cited by 530 (1 self)
 Add to MetaCart
This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Semantic similarity based on corpus statistics and lexical taxonomy
 Proc of 10th International Conference on Research in Computational Linguistics, ROCLING’97
, 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract

Cited by 852 (0 self)
 Add to MetaCart
calculation. When tested on a common data set of word pair similarity ratings, the proposed approach outperforms other computational models. It gives the highest correlation value (r = 0.828) with a benchmark based on human similarity judgements, whereas an upper bound (r = 0.885) is observed when human
Data mules: Modeling a threetier architecture for sparse sensor networks
 IN IEEE SNPA WORKSHOP
, 2003
"... Abstract — This paper presents and analyzes an architecture that exploits the serendipitous movement of mobile agents in an environment to collect sensor data in sparse sensor networks. The mobile entities, called MULEs, pick up data from sensors when in close range, buffer it, and drop off the data ..."
Abstract

Cited by 474 (7 self)
 Add to MetaCart
Abstract — This paper presents and analyzes an architecture that exploits the serendipitous movement of mobile agents in an environment to collect sensor data in sparse sensor networks. The mobile entities, called MULEs, pick up data from sensors when in close range, buffer it, and drop off
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination
Attention, similarity, and the identificationCategorization Relationship
, 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract

Cited by 663 (28 self)
 Add to MetaCart
data were modeled using Sbepard's (1957) multidimensional scalingchoice framework. This framework was then extended to model the subjects ' categorization performance. The categorization model, which generalizes the context theory of classification developed by Medin and Schaffer (1978
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 930 (41 self)
 Add to MetaCart
by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse
Results 1  10
of
1,376,341