Results 1  10
of
1,133,056
Stougie L: Constructing level2 phylogenetic networks from triplets. 2007. arXiv:0707.2890v1 [qbio.PE
"... Abstract—Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level1 network consistent with T, and if so, to construct such ..."
Abstract

Cited by 33 (9 self)
 Add to MetaCart
such a network [24]. Here, we extend this work by showing that this problem is even polynomial time solvable for the construction of level2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily
Application of Phylogenetic Networks in Evolutionary Studies
 SUBMITTED TO MBE 2005
, 2005
"... The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evoluti ..."
Abstract

Cited by 867 (15 self)
 Add to MetaCart
a conservative statistical test for whether the conflicting signal in a network is treelike. Finally, this paper describes a new program SplitsTree4, an interactive and comprehensive tool for inferring different types of phylogenetic networks from sequences, distances and trees.
On the Construction of EnergyEfficient Broadcast and Multicast Trees in Wireless Networks
, 2000
"... wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil ..."
Abstract

Cited by 554 (13 self)
 Add to MetaCart
wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Network information flow
 IEEE TRANS. INFORM. THEORY
, 2000
"... We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information source ..."
Abstract

Cited by 1961 (24 self)
 Add to MetaCart
We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Results 1  10
of
1,133,056