Results 1  10
of
570,124
A Spatial Logic based on Regions and Connection
 PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON KNOWLEDGE REPRESENTATION AND REASONING
, 1992
"... We describe an interval logic for reasoning about space. The logic simplifies an earlier theory developed by Randell and Cohn, and that of Clarke upon which the former was based. The theory supports a simpler ontology, has fewer defined functions and relations, yet does not suffer in terms of its us ..."
Abstract

Cited by 736 (32 self)
 Add to MetaCart
We describe an interval logic for reasoning about space. The logic simplifies an earlier theory developed by Randell and Cohn, and that of Clarke upon which the former was based. The theory supports a simpler ontology, has fewer defined functions and relations, yet does not suffer in terms of its useful expressiveness. An axiomatisation of the new theory and a comparison with the two original theories is given.
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar
Exponents of Vertextransitive Digraphs
 Proceedings of the international symposium on combinatorics and applications
, 1996
"... A digraph D is primitive if, for some positive integer r, there is a u ! v walk of length r for every pair u; v of vertices of D. The minimum such r is called the exponent of D, denoted exp(D). We prove that if a primitive digraph D of order n is an Abelian Cayley digraph with degree k 4, then ex ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
, then exp(D) max n 5; n dk=2e \Gamma 1 o : If we assume only that the primitive digraph D is vertextransitive, then we are able to prove that exp(D) \Sigma n k \Upsilon \Gamma\Sigma n k \Upsilon + 1 \Delta : Finally, we make a conjecture on the exponents of all regular primitive digraphs
Antide Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories
 Adv. Theor. Math. Phys
, 1998
"... The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum phenome ..."
Abstract

Cited by 1087 (4 self)
 Add to MetaCart
The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super YangMills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Antide Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale “holographically ” with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry. March
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems
Distributed hierarchical processing in the primate cerebral cortex
 Cereb Cortex
, 1991
"... In recent years, many new cortical areas have been identified in the macaque monkey. The number of identified connections between areas has increased even more dramatically. We report here on (1) a summary of the layout of cortical areas associated with vision and with other modalities, (2) a comput ..."
Abstract

Cited by 901 (6 self)
 Add to MetaCart
In recent years, many new cortical areas have been identified in the macaque monkey. The number of identified connections between areas has increased even more dramatically. We report here on (1) a summary of the layout of cortical areas associated with vision and with other modalities, (2) a
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
, to accommodate different types of constraints. Some constraints can be imposed without any modification of the algorithm, while others require the solution of a small associated linear system of equations. In particular, vertex location constraints, vertex normal constraints, and surface normal discontinuities
Epidemic Spreading in ScaleFree Networks
, 2000
"... The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scalefree networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from c ..."
Abstract

Cited by 550 (14 self)
 Add to MetaCart
The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scalefree networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five
Results 1  10
of
570,124