Results 1  10
of
21,736
Compressive Sensing MRI with Wavelet Tree Sparsity
"... In Compressive Sensing Magnetic Resonance Imaging (CSMRI), one can reconstruct a MR image with good quality from only a small number of measurements. This can significantly reduce MR scanning time. According to structured sparsity theory, the measurements can be further reduced to O(K + log n) for ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
In Compressive Sensing Magnetic Resonance Imaging (CSMRI), one can reconstruct a MR image with good quality from only a small number of measurements. This can significantly reduce MR scanning time. According to structured sparsity theory, the measurements can be further reduced to O(K + log n
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Sparsityoptimized Harmonic Wavelets for Compressed Sensing MRI
"... 2.1.1 Basis wavelet definition......................... 4 ..."
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 930 (41 self)
 Add to MetaCart
and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a power
Image registration methods: a survey
 IMAGE AND VISION COMPUTING
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract

Cited by 734 (9 self)
 Add to MetaCart
two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and featurebased) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation
Results 1  10
of
21,736