Results 1  10
of
200,405
Complexity of Approximating the Vertex Centroid of a Polyhedron ⋆
"... Abstract. Let P be an Hpolytope in R d with vertex set V. The vertex centroid is defined as the average of the vertices in V. We first prove that computing the vertex centroid of an Hpolytope, or even just checking whether it lies in a given halfspace, are #Phard. We also consider the problem of ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
of approximating the vertex centroid by finding a point within an ǫ distance from it and prove this problem to be #Peasy by showing that given an oracle for counting the number of vertices of an Hpolytope, one can approximate the vertex centroid in polynomial time. We also show that any algorithm approximating
On computing the vertex centroid of a polyhedron
 CoRR
"... Let P be an Hpolytope in Rd with vertex set V. The vertex centroid is defined as the average of the vertices in V. We prove that computing the vertex centroid of an Hpolytope is #Phard. Moreover, we show that even just checking whether the vertex centroid lies in a given halfspace is already #Ph ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
hard for Hpolytopes. We also consider the problem of approximating the vertex centroid by finding a point within an ǫ distance from it and prove this problem to be #Peasy by showing that given an oracle for counting the number of vertices of an Hpolytope, one can approximate the vertex centroid
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract

Cited by 497 (22 self)
 Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling
A Volumetric Method for Building Complex Models from Range Images
, 1996
"... A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robus ..."
Abstract

Cited by 1018 (18 self)
 Add to MetaCart
A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction
Results 1  10
of
200,405