Results 1  10
of
2,111,897
Modular Competitiveness for Distributed Algorithms
 In Proc. 28th ACM Symp. on Theory of Computing (STOC
, 2000
"... We define a novel measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al. [3], which measures how quickly an algorithm can finish ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
We define a novel measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al. [3], which measures how quickly an algorithm can
Compositional Competitiveness for Distributed Algorithms
, 2004
"... We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al. [3], which measures how quickly an algorithm can finish tasks ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al. [3], which measures how quickly an algorithm can finish
A Modular Measure of Competitiveness for Distributed Algorithms
"... The tool of competitive analysis has long been used to deal with nondeterminism in the form of unpredictable request sequences in online settings. The performance measure of an algorithm is its competitive ratio, the supremum over all possible request sequences of the ratio of the algorithm's ..."
Abstract
 Add to MetaCart
The tool of competitive analysis has long been used to deal with nondeterminism in the form of unpredictable request sequences in online settings. The performance measure of an algorithm is its competitive ratio, the supremum over all possible request sequences of the ratio of the algorithm
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract

Cited by 778 (21 self)
 Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum
CostAware WWW Proxy Caching Algorithms
 IN PROCEEDINGS OF THE 1997 USENIX SYMPOSIUM ON INTERNET TECHNOLOGY AND SYSTEMS
, 1997
"... Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and nonparameterized fash ..."
Abstract

Cited by 544 (6 self)
 Add to MetaCart
Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and non
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Algorithms for Scalable Synchronization on SharedMemory Multiprocessors
 ACM Transactions on Computer Systems
, 1991
"... Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become marke ..."
Abstract

Cited by 567 (32 self)
 Add to MetaCart
markedly more pronounced as applications scale. We argue that this problem is not fundamental, and that one can in fact construct busywait synchronization algorithms that induce no memory or interconnect contention. The key to these algorithms is for every processor to spin on separate locally
Results 1  10
of
2,111,897