• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 291,045
Next 10 →

Evolving Neural Networks through Augmenting Topologies

by Kenneth O. Stanley, Risto Miikkulainen - Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task ..."
Abstract - Cited by 524 (113 self) - Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning

Bayesian Network Classifiers

by Nir Friedman, Dan Geiger, Moises Goldszmidt , 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract - Cited by 788 (23 self) - Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly

An Efficient Boosting Algorithm for Combining Preferences

by Raj Dharmarajan Iyer , Jr. , 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract - Cited by 707 (18 self) - Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new

Constraint Networks

by Rina Dechter , 1992
"... Constraint-based reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract - Cited by 1149 (43 self) - Add to MetaCart
expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems

Parallel Networks that Learn to Pronounce English Text

by Terrence J. Sejnowski, Charles R. Rosenberg - COMPLEX SYSTEMS , 1987
"... This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract - Cited by 548 (5 self) - Add to MetaCart
task, but differ completely at the levels of synaptic strengths and single-unit responses. However, hierarchical clustering techniques applied to NETtalk reveal that these different networks have similar internal representations of letter-to-sound correspondences within groups of processing units

Statistical mechanics of complex networks

by Réka Albert, Albert-lászló Barabási - Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract - Cited by 2083 (10 self) - Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled

Overcast: Reliable Multicasting with an Overlay Network

by John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James W. O'Toole, Jr. , 2000
"... Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations in a ..."
Abstract - Cited by 563 (10 self) - Add to MetaCart
Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations

Snort - Lightweight Intrusion Detection for Networks

by Martin Roesch, Stanford Telecommunications , 1999
"... Permission is granted for noncommercial reproduction of the work for educational or research purposes. ..."
Abstract - Cited by 1109 (1 self) - Add to MetaCart
Permission is granted for noncommercial reproduction of the work for educational or research purposes.

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 609 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

Active Learning with Statistical Models

by David A. Cohn, Zoubin Ghahramani, Michael I. Jordan , 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract - Cited by 677 (12 self) - Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative
Next 10 →
Results 1 - 10 of 291,045
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University