Results 1  10
of
93,790
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
An introduction to Kolmogorov Complexity and its Applications: Preface to the First Edition
, 1997
"... This document has been prepared using the L a T E X system. We thank Donald Knuth for T E X, Leslie Lamport for L a T E X, and Jan van der Steen at CWI for online help. Some figures were prepared by John Tromp using the xpic program. The London Mathematical Society kindly gave permission to reproduc ..."
Abstract

Cited by 2143 (120 self)
 Add to MetaCart
This document has been prepared using the L a T E X system. We thank Donald Knuth for T E X, Leslie Lamport for L a T E X, and Jan van der Steen at CWI for online help. Some figures were prepared by John Tromp using the xpic program. The London Mathematical Society kindly gave permission to reproduce a long extract by A.M. Turing. The Indian Statistical Institute, through the editor of Sankhy¯a, kindly gave permission to quote A.N. Kolmogorov. We gratefully acknowledge the financial support by NSF Grant DCR8606366, ONR Grant N0001485k0445, ARO Grant DAAL0386K0171, the Natural Sciences and Engineering Research Council of Canada through operating grants OGP0036747, OGP046506, and International Scientific Exchange Awards ISE0046203, ISE0125663, and NWO Grant NF 62376. The book was conceived in late Spring 1986 in the Valley of the Moon in Sonoma County, California. The actual writing lasted on and off from autumn 1987 until summer 1993. One of us [PV] gives very special thanks to his lovely wife Pauline for insisting from the outset on the significance of this enterprise. The Aiken Computation Laboratory of Harvard University, Cambridge, Massachusetts, USA; the Computer Science Department of York University, Ontario, Canada; the Computer Science Department of the University xii of Waterloo, Ontario, Canada; and CWI, Amsterdam, the Netherlands provided the working environments in which this book could be written. Preface to the Second Edition
Chord: A Scalable PeertoPeer Lookup Service for Internet Applications
 SIGCOMM'01
, 2001
"... A fundamental problem that confronts peertopeer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto ..."
Abstract

Cited by 4435 (75 self)
 Add to MetaCart
A fundamental problem that confronts peertopeer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto
Results 1  10
of
93,790