Results 1  10
of
2,661,651
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper
Unrealistic optimism about future life events
 Journal of Personality and Social Psychology
, 1980
"... Two studies investigated the tendency of people to be unrealistically optimistic about future life events. In Study 1, 258 college students estimated how much their own chances of experiencing 42 events differed from the chances of their classmates. Overall, they rated their own chances to be above ..."
Abstract

Cited by 493 (0 self)
 Add to MetaCart
bias evoked by different events. All predictions were supported, although the pattern of effects differed for positive and negative events. Study 2 tested the idea that people are unrealistically optimistic because they focus on factors that improve their own chances of achieving desirable outcomes
Using Daily Stock Returns: The Case of Event Studies
 Journal of Financial Economics
, 1985
"... This paper examines properties of daily stock returns and how the particular characteristics of these data affect event study methodologies. Daily data generally present few difficulties for event studies. Standard procedures are typically wellspecified even when special daily data characteristics ..."
Abstract

Cited by 763 (2 self)
 Add to MetaCart
tics are ignored. However, recognition of autocorrelation in daily excess returns and changes in their variance conditional on an event can sometimes be advantageous. In addition, tests ignoring crosssectional dependence can be wellspecified and have higher power than tests which account for potential dependence
The Encyclopedia of Integer Sequences
"... This article gives a brief introduction to the OnLine Encyclopedia of Integer Sequences (or OEIS). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae, programs ..."
Abstract

Cited by 866 (15 self)
 Add to MetaCart
This article gives a brief introduction to the OnLine Encyclopedia of Integer Sequences (or OEIS). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae
A greedy algorithm for aligning DNA sequences
 J. COMPUT. BIOL
, 2000
"... For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy a ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy
Memory Consistency and Event Ordering in Scalable SharedMemory Multiprocessors
 In Proceedings of the 17th Annual International Symposium on Computer Architecture
, 1990
"... Scalable sharedmemory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the f ..."
Abstract

Cited by 735 (18 self)
 Add to MetaCart
and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong
A comparison of event models for Naive Bayes text classification
, 1998
"... Recent work in text classification has used two different firstorder probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multivariate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey ..."
Abstract

Cited by 1002 (27 self)
 Add to MetaCart
Recent work in text classification has used two different firstorder probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multivariate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey and Croft 1996; Koller and Sahami 1997). Others use a multinomial model, that is, a unigram language model with integer word counts (e.g. Lewis and Gale 1994; Mitchell 1997). This paper aims to clarify the confusion by describing the differences and details of these two models, and by empirically comparing their classification performance on five text corpora. We find that the multivariate Bernoulli performs well with small vocabulary sizes, but that the multinomial performs usually performs even better at larger vocabulary sizesproviding on average a 27% reduction in error over the multivariate Bernoulli model at any vocabulary size.
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1238 (0 self)
 Add to MetaCart
in the work of two Hungarian mathematicians may be exploited to yield a new method of solving this problem. 1.
Results 1  10
of
2,661,651