Results 1  10
of
2,025,397
Codes of Small Defect
 DESIGNS, CODES, AND CRYPTOGRAPHY
, 1997
"... The parameters of a linear code C over GF(q) are given by [n, k, d], where n denotes the length, k the dimension and d the minimum distance of C . The code C is called MDS, or maximum distance separable, if the minimum distance d meets the Singleton bound, i.e. d nk+1. Unfortunately, the paramete ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The parameters of a linear code C over GF(q) are given by [n, k, d], where n denotes the length, k the dimension and d the minimum distance of C . The code C is called MDS, or maximum distance separable, if the minimum distance d meets the Singleton bound, i.e. d nk+1. Unfortunately
Bandera: Extracting Finitestate Models from Java Source Code
 IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 2000
"... Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a fini ..."
Abstract

Cited by 653 (35 self)
 Add to MetaCart
Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a
Understanding Code Mobility
 IEEE COMPUTER SCIENCE PRESS
, 1998
"... The technologies, architectures, and methodologies traditionally used to develop distributed applications exhibit a variety of limitations and drawbacks when applied to large scale distributed settings (e.g., the Internet). In particular, they fail in providing the desired degree of configurability, ..."
Abstract

Cited by 549 (34 self)
 Add to MetaCart
, scalability, and customizability. To address these issues, researchers are investigating a variety of innovative approaches. The most promising and intriguing ones are those based on the ability of moving code across the nodes of a network, exploiting the notion of mobile code. As an emerging research field
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract

Cited by 497 (6 self)
 Add to MetaCart
We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
chosen element of the given ensemble will achieve an arbitrarily small target probability of error with a probability that approaches one exponentially fast in the length of the code. (By concatenating with an appropriate outer code one can achieve a probability of error that approaches zero
Improving DirectMapped Cache Performance by the Addition of a Small FullyAssociative Cache and Prefetch Buffers
, 1990
"... ..."
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1055 (1 self)
 Add to MetaCart
the quantity R*(d). defined as the infimum of rates R such that (with E> 0 arbitrarily small and with suitably large n) communication is possible in the above setting at an average distortion level (as defined above) not exceeding d + E. The main result is that R*(d) = inf[Z(X,Z) Z(Y,Z)], where
Results 1  10
of
2,025,397