Results 1  10
of
2,594,940
Clustering with Relative Constraints
"... Recent studies [26, 22] have suggested using relative distance comparisons as constraints to represent domain knowledge. A natural extension to relative comparisons is the combination of two comparisons defined on the same set of three instances. Constraints in this form, termed Relative Constraints ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Constraints, provide a unified knowledge representation for both partitional and hierarchical clusterings. But many key properties of relative constraints remain unknown. In this paper, we answer the following important questions that enable the broader application of relative constraints in general
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint
Adaptive clustering for mobile wireless networks
 IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract

Cited by 556 (11 self)
 Add to MetaCart
This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.
The Semantics Of Constraint Logic Programs
 JOURNAL OF LOGIC PROGRAMMING
, 1996
"... This paper presents for the first time the semantic foundations of CLP in a selfcontained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new and comp ..."
Abstract

Cited by 872 (14 self)
 Add to MetaCart
and complete proofs for the main lemmas. Importantly, we clarify which theorems depend on conditions such as solution compactness, satisfaction completeness and independence of constraints. Second, we generalize the original results to allow for incompleteness of the constraint solver. This is important
Concurrent Constraint Programming
, 1993
"... This paper presents a new and very rich class of (concurrent) programming languages, based on the notion of comput.ing with parhal information, and the concommitant notions of consistency and entailment. ’ In this framework, computation emerges from the interaction of concurrently executing agent ..."
Abstract

Cited by 502 (16 self)
 Add to MetaCart
agents that communicate by placing, checking and instantiating constraints on shared variables. Such a view of computation is interesting in the context of programming languages because of the ability to represent and manipulate partial information about the domain of discourse, in the con
Distributional Clustering Of English Words
 In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics
, 1993
"... We describe and evaluate experimentally a method for clustering words according to their dis tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used as the si ..."
Abstract

Cited by 631 (30 self)
 Add to MetaCart
We describe and evaluate experimentally a method for clustering words according to their dis tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 864 (25 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve
Results 1  10
of
2,594,940