Results 1 - 10
of
300,082
An experimental comparison of three methods for constructing ensembles of decision trees
- Bagging, boosting, and randomization. Machine Learning
, 2000
"... Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative approac ..."
Abstract
-
Cited by 604 (6 self)
- Add to MetaCart
Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
- MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract
-
Cited by 695 (2 self)
- Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants
A classification and comparison framework for software architecture description languages
- IEEE Transactions on Software Engineering
, 2000
"... Software architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support architecture-based development. There is, howev ..."
Abstract
-
Cited by 840 (59 self)
- Add to MetaCart
, module interconnection, simulation, and programming languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a definition and a classification framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from
Missing data: Our view of the state of the art
- Psychological Methods
, 2002
"... Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random ..."
Abstract
-
Cited by 689 (1 self)
- Add to MetaCart
developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the main-stream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art. Why do missing data create such difficulty in sci-entific research? Because
Mining Concept-Drifting Data Streams Using Ensemble Classifiers
, 2003
"... Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two ch ..."
Abstract
-
Cited by 264 (35 self)
- Add to MetaCart
challenges, the overwhelming volume of the streaming data, and the concept drifts. In this paper, we propose a general framework for mining concept-drifting data streams using weighted ensemble classifiers. We train an ensemble of classification models, such as C4.5, RIPPER, naive Bayesian, etc., from
From data mining to knowledge discovery in databases
- AI Magazine
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases ..."
Abstract
-
Cited by 510 (0 self)
- Add to MetaCart
■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery
Activity recognition from user-annotated acceleration data
, 2004
"... In this work, algorithms are developed and evaluated to detect physical activities from data acquired using five small biaxial accelerometers worn simultaneously on different parts of the body. Acceleration data was collected from 20 subjects without researcher supervision or observation. Subjects ..."
Abstract
-
Cited by 492 (7 self)
- Add to MetaCart
. Subjects were asked to perform a sequence of everyday tasks but not told specifically where or how to do them. Mean, energy, frequency-domain entropy, and correlation of acceleration data was calculated and several classifiers using these features were tested. Decision tree classifiers showed the best
A land use and land cover classification system for use with remote sensor data
- USGS Prof. Pap
, 1976
"... A revision of the land use classification system as presented in U.S. Geological Survey Circular 671 ..."
Abstract
-
Cited by 476 (0 self)
- Add to MetaCart
A revision of the land use classification system as presented in U.S. Geological Survey Circular 671
Machine Learning in Automated Text Categorization
- ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract
-
Cited by 1658 (22 self)
- Add to MetaCart
The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach
Results 1 - 10
of
300,082